CSTQ | conrexe

ZPRAVODA]

Ceskoslovenského sdruzeni uzivateltt TgXu

2011

ISSN 1211-6661 ISSN 1213-8185 Ro¢nik 21

Tisténa verze Online verze

Zpravodaj Ceskoslovenského sdruzeni uzivateldt TEXu je vydavan v tisténé podobé
a distribuovdn zdarma clenim sdruzeni. Po uplynuti dvandacti mésici od tisténého
vydani je poskytovdan v elektronické podobé (PDF) ve vefejné piistupném archivu
dostupném pres http://www.cstug.cz/ .

Zpravodaj je zarazen do Seznamu recenzovanych neimpaktovanych periodik vydavanych
v Ceské republice, viz http://www.vyzkum.cz/ .

Své prispévky do Zpravodaje muzete zasilat v elektronické podobé, nejlépe jako jeden
archivni soubor (.zip, .arj, .tar.gz). Postupujte podle instrukci, které najdete na
strance http://bulletin.cstug.cz/. Pokud neméte pfistup na Internet, muzete zaslat
prispévek na disketé, CD, ¢i DVD na adresu:

Zdenék Wagner
Vinohradska 114
130 00 Praha 3

zpravodaj@cstug.cz

Nezapomerite pfilozit vSechny soubory, které dokument nacita (s vyjimkou standardnich
soucdsti TEX Live), zejména v ptripadé, kdy véds nelze kontaktovat e-mailem.

ISSN 1211-6661 (tiSténd verze)
ISSN 1213-8185 (online verze)

A\
@ &

s i

Photos by Frans Goddijn — IX/2010

Conference Proceedings of

The Fourth International CONIEXT Meeting
and The Third TgXperience Conference

CSTpa
(CPATENTS

PROCESS INSTRUMENTS
v -
KORUNNI

P !\/
MINISTRY OF EDUCATION,
YOUTH AND SPORTS

¥ Tomas Bata University in Zlin
Faculty of Management and Economics

Preface
Predmluva

‘lJAN KuLA, PAVEL STf{fZI

Dear TEX lovers, developers and users; dear friends, ladies and gentlemen,

You have just opened the conference proceedings from a double-conference,
the fourth international CONTEXT meeting (4CM) and the third TgXperience
conference (3TE; an annual (FT'UG meeting). Both took place in the Brejlov mill
(Prague), the Czech Republic, www.brejlov.cz, on September 13-19, 2010.

The informal conference themes were:

CONTEXT typesetting documentation, teach as we preach, along with
Plain TEX, BTEX, CONTEXT and LuaTgX are best friends!

We are honoured that the fourth CONIEXT meeting and the third TEXpe-
rience conference took place under the aegis of the Ministry of Education, Youth
and Sports of the Czech Republic, www.msmt . cz.

We are also proud that the Czechoslovak TEX Users Group, www.cstug.cz,
and Faculty of Management and Economics of Tomas Bata University in Zlin,
the Czech Republic, www.fame.utb.cz, took the patronage of conferences.

Our thanks go to sponsors and benefactors without whom the conferences
would be difficult to manage and impossible to make the participants feel like
home, surrounded by family and pets.

Enjoy the articles, photos and supplemental material included in the proce-
edings. We made as few editorial corrections as possible.

We hope we will meet you at a TEX or Open Source conference soon. If not
then see you in 2013 in Brejlov!

Sincerely Yours,

Jdn Kula, Pavel Striz
On behalf of the organizers

ufippoo sueiy Aq ojoyd

® 9IqIsiaul
a4oMm sjuedionied
buurewsa. oy

19]UdA3Q UBA AT *
@3Sld [21e) *
JewnfeHy Aejsoder *
B1uoy pleleH
ZI1S ueli -

2104y }98UARd * uabey suey * yoe|puno >oujed -
e)zeydold sexny - 19663 1im e|ny| ouer
nejse.ig uely * 19neusindy JNYHY * WINIJOMN UDSYDIS
191em>30H ooe| * J3AeP{I 22O * 193snyds Huebyjom

oidiop e *

abeaeing |geyolp
Jiseg OuIN °

¥Az2o|9z13S 13014 *
BuluusHy wwey ueqeiy -

0s1eds 16T * YIBIAAHIN * eX|OWOH J0qnT

QT -°¢1) Aofleag ‘orgqndeyy gos

Programme

of ConTEXt meeting and TEXperience

Brejlov 13.-19. 9. 2010

Monday 13.9.

18:30 |Dinner 90
20:00|Taco Hoekwater / Hans Hagen |ConTeXt installation clinic workshop | 120
/ Mojca Miklavec
Tuesday 14.9.
8:00 |Breakfast 60
09:00 Conference opening 15
09:15 |Arthur Reutenauer Keynote talk talk 15
09:30 | Taco Hoekwater Reference manual update talk 15
09:45 [Patrick Gundlach ‘Wiki context reference talk 15
10:00 | Taco Hoekwater / Hans Hagen |Other documentation news talk 15
10:15 |Peter Minster (presented by |Reference syntax in lua talk 15
Taco)
10:30 | Coffee 30
11:00 |Hans Hagen Why structure matters talk 30
11:30 | Wolfgang Schuster Module documentation talk 30
12:00 |Hans Hagen A Context Scoop talk 30
12:30 |Lunch 90

14:00

Mari Voipio

A Different Philosophy I Thoughts on teaching ConTeXt

to non-techies

discussion | 30

14:30 |Mari Voipio Observations on approaches to learning ConTeXt and discussion | 60
writing documentation to match

15:30 | Coffee 30

16:00 |Wolfgang Schuster xml interface files and internal module doku (%D, %M talk 30
etc.)

16:30 |Hans Hagen Requirements For Documentation talk 30

17:00 |Hans Hagen My Slowly Growing Test Suite talk 30

17:30 Documentation discussion discussion | 60

18:30 |Dinner 90

20:00 | Taco Hoekwater tlcontrib.metatex.org talk 30

20:30 | Mojca Miklavec ConTeXt minimals, "Server edition" talk-+dis- 30
cussion

21:00 |Patrick Gundlach contextgarden.net q&a 30

Wednesday 15.9.

8:00 |Breakfast 60

09:00 [Mari Voipio Uses for ConTeXt in a standard office environment talk 30

09:30 |Hans Hagen / Mojca Miklavec |The database module, MKIV version talk 30

10:00 |Hans Hagen XML processing news talk+work- | 60

shop

11:00 | Coffee 30

11:30|Alan Braslau Plotting data with Metafun/Metapost talk+dis- | 45
cussion

71

12:15|Alan Braslau Drawing diagrams using the chart module talk+dis- 45
cussion
13:00 |Lunch 90
14:30 |Hans Hagen Font Goodies talk 30
15:00 |Mojca Miklavec Some thoughts on typescripts talk+dis- 60
cussion
16:00 |Coffee 30
16:30 |Aditya Mahajan (presented by |Beg, borrow, and steal — running external filters in Con- talk 30
Luigi) TeXt
17:00 |Alan Braslau Drawing chemical structures using ppchTeX talk 30
17:30 |Wolfgang Schuster The letter module talk+work- | 90
shop
19:00 |Dinner 90
20:30 |Luigi Scarso modules_ mkiv talk 30
21:00 [Hans Hagen Document workflow tutorial 30
21:30 |Hans Hagen Whatever You Want To Know q&a 90
Thursday 16.9.
8:00 |Breakfast 60
09:00 |Luigi Scarso Souvenir d’Ttalie talk 30
09:30 |Hans Hagen Context Lua Documents talk 30
10:00 |Coffee 30
10:30 | Taco Hoekwater Escrito talk 30
11:00 |Patrick Gundlach LuaTeX without TeX — or: the hidden beauty of TeX talk 45
11:45 |Aditya Mahajan (presented by |Math wishlist discussion | 30
Taco)
12:15 |Lunch 75
13:30 Relax time to be announced (trip, walk, excursion)
Friday 17.9.
8:00 |Breakfast 90
09:30 |Hans Hagen How Luatex and Context Proceed talk 30
10:00 | Taco Hoekwater The current state of LuaTeX talk 30
10:30 | Taco Hoekwater Metapost developments talk 30
11:00 |Coffee 30
11:30 |Arthur Reutenauer The ever-regenerating hydra: hyphenation patterns in talk 30
Unicode, and beyond
12:00 |David Brezina General issues in multi-script typography talk 45
12:45 |Ulrik Vieth Experiences typesetting OpenType math with LuaLaTeX talk 30
and XeLaTeX
13:15 |Lunch 90
14:45 |Karel Piska Fonts with complex OpenType tables talk 30
15:15 |David Bfezina Skolar — Designing a Typeface for Academic Publica- talk 30
tions: http://www.type-together.com/Skolar
15:45 |Piotr Strzelczyk Short info about new release of Antykwa Péltawskiego talk 30
font
16:15 |Coffee 30
16:45 |Luigi Scarso Playing with Flash in ConTeXt-mkiv talk 30
17:15 |Karel Horak Do it better ... talk 30

72

17:45|Taco Hoekwater Lua for Beginners workshop 60

18:45 Conference close 15

19:00 |Dinner 90

20:30 | Taco Hoekwater Lua for Beginners workshop 30

21:00 |Taco Hoekwater Metapost details demo 30

Saturday 18.9.

8:00 |Breakfast 60

09:00 | Taco Hoekwater Lua for font lovers workshop 90

10:30 | Coffee 30

11:00 |Willi Egger Arranging Pages for Printing + Creating a Flyer talk+work- | 90

shop

12:30 |Lunch 90

14:00 | John Haltiwanger Subtext: A Proposed Processual Grammar for a talk 30
Multi-Output Pre-Format

14:30|Idris Samawi Hamid (presented |Oriental TeX crosses the Rubicon. Advanced Qur?anic talk 30 English

by Taco) Typesetting in MKIV.

15:00 |Hans Hagen Arabic paragraphs talk 15 English

15:15 | Coffee 30

15:45 Opening TeXperience 2010 10

15:55 | Jaroslav Hajtmar The ScanCSV.lua Library: http://public.hajtmar.com/files talk 45 | Czech/English
/tex/scancsv.lua/demo-scancsv.lua.zip

16:40 | Tomas Hala Marking of Proof-sheets in Publishing Practice and Its talk 20 Czech
Implementation in TeX System

17:00 |Roman Trusnik Typesetting Bibliography of American Literature in talk 30 English
Czech Translation: 2000 & 2010

17:30 TeX Typesetting on Web: http://tex.mendelu.cz/en talk 30 English

18:00 |Dinner 90

19:30 |Zdenék Wagner / Anshuman |Xindy Sort and Merge Rules for Indic languages: http:/ talk 60 English

Pandey / Jaya Saraswati /icebearsoft.euweb.cz/xindy-devanagari

20:30 |[Late tea 15

20:45 TeXperience 2010 Book Contest 30 Czech

21:15 |Milan Stouraé Introducing New Traveler’s Book 15 Czech

21:30 |Milan Stoura¢ Wanderer’s Notebook: Iran and Azerbaijan 90 Czech

Sunday 19.9.

8:00 |Breakfast 60

09:00 |Petr Olsak Typesetting Math: Internal Algorithms in TeX tutorial 90 Czech

10:30 | Tea 15

10:45 | Jan Stépnicka / Jan Sustek Using TeX for Organizing International Mathematical talk 45 Czech
Competition

11:30 |Mirek Olsdk CerTeXicate — Online Printing of High School Certifi- talk 15 Czech
cates

11:45 |Jan Sustek Macros Which Handle Arithmetics with Big Numbers talk 15 | English/Czech

12:00 |Jan Stépnicka LaTeX2rtf — TeX in Building Industry talk 15 Czech

12:15 |Milos Brejcha Pilsen — Venue for TeXperience 2011: http://www.plzen.eu talk 15 Czech

12:30 Viva TeXperience 2011!

12:30 |Lunch 90

73

Selected Abstracts from TEXperience

Jan Stépnicka, Jan Sustek:

Using TEX for Organizing Vojtéch Jarnik International
Mathematical Competition

The University of Ostrava organizes Vojtéch Jarnik International Mathematical
Competition every year. Organization of the competition contains of many tasks.
A large part of them is done by TEX. On the lecture we briefly present the whole
process from registration of participants to putting the results on the Internet.
We describe several parts which can be useful for other TEX users:

e during generation of the printing before the competition: simple loading
of data from database, writing Unicode characters to a file or generating
pseudorandom numbers,

¢ during procession of problems proposed for the competition: using a sin-
gle source file for six different outputs or simple ignoring of macros and
environments,

o during procession of results of the competition: loading results from spread-
sheet or generation of diplomas.

It is likely that some of these parts are already implemented somewhere in the
set of INTEX packages. In this case the lecture shows an alternative approach.

Zdenék Wagner, Anshuman Pandey and Jaya Saraswati:
Development of xindy Sort and Merge Rules for Indic languages

An index is an important part of a book or a longer document. Normally in
the past the index was prepared using the Makelndex program which offered
sorting according to English and German rules. A derived program called Csln-
dex allowed for the preparation of indices in the Czech and Slovak languages.
Sorting in other languages was difficult because the algorithm was hard coded
in the C program. The situation was changed in Makelndex 3.x which is now
superseded by xindy. The sorting algorithm is now defined in tables that are
present in standalone modules.

This contribution shows how xindy features can be deployed in sorting Indic
languages where complex scripts are used. Since the original TEX was unaware
of Unicode, transliteration schemes were introduced in the past. XqIEX is quite
popular mainly among new users and the transliteration systems are still in
current use. Xindy is able to handle the input in the transliteration as well as the
UTF-8 encoded text. The algorithm is demonstrated in the Hindi and Marathi
languages. It also shows how xindy integrates with different TEX engines.

74

David Brezina:

Skolar — Designing a Typeface for Academic Publications

Skolar is a text serif, originally designed with scholarly and multilingual pub-
lications in mind. The typeface maintains its credibility while incorporating a
subtle personal style, neither neutral nor conspicuous.

Prominent serifs and low-contrast modulation add to its robustness, and,
together with a relatively large x-height, improve the typeface’s readability in
small sizes. This family of three weights with their respective italics and large
character set is flexible enough for complex text settings and editorial work. It
also becomes distinctive in bigger sizes, fitting the demands of corporate design.

There have been many practical solutions introduced in the typeface; the ca-
pitals are rather low in comparison to the ascenders. This gives the typeface even
texture and more space for capital diacritical marks. The italic has a shallow
angle and large counters for better readability in small print. It is easily recogni-
zed but not ostentatious, blending well with the uprights. Semibold is weighted
to emphasize text blocks, where Bold is intended for word clusters. The family
includes a complex set of smart arrows which can be easily keyed and infinitely
combined using OpenType features. It was released with TypeTogether and it
is available for web using Typekit as well.

Roman Trusnik:

Typesetting Bibliography of American Literature

in Czech Translation: 2000 & 2010

After the experience with data processing and typesetting the first part of Bib-
liography of American Literature in Czech Translation (Olomouc: Votobia 2000,
3 volumes, 1882 pages) in the late 1990s in Aldus PageMaker 5.0, new possibili-
ties were explored before the preparation of the second part (to be published in
2010). The paper deals with the issues that had to be addressed as requirements
included seamless processing of large multi-language multi-alphabet multi-font
structured documents. After extensive testing (several monographs and volumes
of conference proceedings, Moravian Journal of Literature and Film), XqATEX
was adopted as the typesetting platform for the project.

Jan Prichystal: TEX Typesetting on Web: tex.mendelu.cz/en

This talk introduces web application TEXonWeb. This interface helps beginners
to start with typesetting system TgEX offering them easy to access and easy
to use editor, TEX compiler, code wizards and document templates. Application
could also be helpful in situations when user wants to produce high-quality docu-
ment but no computer with TEX is available. Introduction to used technologies,
features and future visions will also be included.

(0]

Jaroslav Hajtmar: The ScanCSV.lua Library

In computerised data processing, data stored in CSV files (Comma Separated Va-
lues) are used frequently. The presentation describes the author’s library Scan-
CSV.lua and the method of its creation. The practical examples of its use in
CoNTgXT MKIV will also be demonstrated. The author shows how easy and
swift is to create reports, letters, forms, certificates, invitations, business cards,
double-sided cards, tables, animations, etc. using external CSV databases. Users
of CONTEXT MKIV (but LualATEX and LuaTgX too) can practically use data
from external CSV tables in own documents through the TEX macros built by
this library on-the-fly. It also means that we have this data available in an at-
tractive, simple and natural way.

Jan Sustek: Macros That Handle Arithmetics with Big Numbers

In procedural programming languages a program calls functions with their argu-
ments and the functions return their result. To avoid collisions, functions have
their local variables. Result of a function is one of the local variables, but one
can see it “nonlocally” immediately after the function call.

On the contrary, programming in TEX is based on expansions. Sequence of
tokens is repeatedly expanded and when a particular token cannot be expanded,
the main processor does the corresponing activity. The concept of result of a
function does not make sense in TEX. If a definition, counter etc. is not local,
then it is global.

We will show how it is possible, using expansions in TEX, to simulate function
calls similarly as in procedural programming languages. The problem of (non)-
local variables arises when one function calls another function. In this situation
one can bypass the problem by a neat choice of macro names. But this is a
nonnatural procedure and in the case when a function calls recursively itself it
is not possible.

When one works with big numbers on computer, array is the most suitable
data structure. Usual procedural programming languages know arrays. TEX pri-
marily does not know arrays. We show one of possilble implementations of arrays
in TEX. This implementation, however, is not good for sending the values be-
tween function. Hence we show another data structure and functions for con-
version between different data structures. It is senseless to write that decadic
expansion is not suitable.

As a demonstration of the mentioned function calls we implemented functions
from number theory. The following short programs allows us to decide whether
¢ is composite.

c= (2107 _ 1)(2127 _ 1) —
= 27606985387162255149739023449107931668458716142620601169954803000803329

76

\SET\a\POWER.(2) (107)
\SET\a\SUBTRACT [\a] (1)
\SET\b\POWER (2) (127)
\SET\b\SUBTRACT [\b] (1)
\SET\c\ULTIPLY [\a] [\b]
\ArrayToPrint\c\c
\SHOW ¢
\SET\r\ISCOMPOSITE(\c)
\SHOW r
\bye
Function \ISCOMPOSITE performs Fermat test calling function \FERMAT, which
computes power in modular arithmetic calling function \POWERMOD, which mul-
tiples its arguments calling function \SQUAREMOD, which, when looking for re-
mainder, uses division calling function \DIVIDE, which uses subtraction calling
function \SUBTRACT.

7

Abstracts without Papers

Taco Hoekwater: Metapost Development

Metapost 2.000 is planned for release in the summer of 2010. This presentation is
a short report on the current status of the development. Metapost version 1.500
will (hopefully) be ready just in time for BachoTEX 2010, and in that release
all memory arrays will have been replaced by dynamic memory allocation. A
followup in the evening program highlights some of the ugly details.

Taco Hoekwater: Lua for Beginners
A tutorial that explains the basics of Lua programming and demonstrates some
ways it can be used within documents.

Taco Hoekwater: Lua for Font Lovers
A tutorial that explains how the LuaTEX fontloader library works, and shows
various font tricks you can do by using Lua code.

Taco Hoekwater:
Escrito — A PostScript-compatible Interpreter in Lua
Escrito is the name of an interpreter for the PostScript language written in
pure Lua code. Its default output device generates Portable Document Format
(PDF) operators, making it ideally suitable for handling PostScript code within
LuaTgX.
Using a little bit of Lua glue code, it will become possible to do the following
things in LuaTEX that were previously only doable via complex workarounds:
* Include EPS images without the need for an external conversion process.
* Support the PSTricks macro package.
* Run Kees van der Laan’s PostScript programs in-line.

Taco Hoekwater: tlcontrib.metatex.org

TL Contrib is a repository for packages and package updates that for various
reasons cannot be in TEX Live itself. Think of packages that not quite free
software according to the debian guidelines (for example packages that prohibit
changes or come without sources), packages that prohibit commercial resale (the
TEX Live DVDs are sold by Lehmanns), and updates for binary packages that
actually are in TEX Live. The TL Contrib repository can be used with tlmgr to
install such packages, and of course it is possible for authors to register their
packages in it.

78

Mojca Miklavec: ConTEXt Minimals, “Server Edition”

The idea is to release clean code by the time of conference that would enable
anyone to set up his own mirror for CONTEXT distribution and thus increase its
bus factor in case that Mojca goes to long vacations or becomes too inspired by
her research work.

Mojca Miklavec and Hans Hagen:

The Database Module, MKIV Version

As Hans promised Mojca to make a MKIV variant of the database module that
she loves so dearly, an actually did it, this variant will be presented at the
conference by Mojca and Hans.

David Brezina: General Issues in Multi-script Typography

An overview of the most common typographic issues in publications which in-
volve two or more scripts with a horizontal reading direction (e.g. Latin, Indic,
Arabic, Hebrew, etc.). The talk aims to explain the problems systematically from
a partially-objective point of view and show some of the possible solutions.

Luigi Scarso: Modules_ mkiv

Modules_mkiv is an attempt to document context source code in an automatic
fashion, and also a test for LuaTgX and CONTEXT MKIV. All PDFs are made
with CONTEXT MKIV and LuaTgX, see
http://foundry.supelec.fr/gf/project/modules/.

Hans Hagen: ConTEXt Lua Documents
For a while now we have the CONTEXT user interface accessible at the Lua
end. Although future releases will have an additional (and different) library, the
current one is especially handy for users who are already familiar with CONTEXT.
The CLD interface is rather simple and can be quite powerful but it also has
some limitations. All of this will be discussed.

Hans Hagen: Font Goodies

The ability to have control over matters has always been one of TEX’s virtues.
Operating beyond what fonts provide out of the box is an example of this. Fonts
can have features that users turn on or off, but how to know what to apply when?
And how about additional features? Do we want detailed control at the TEX end
or can it be done more conveniently in Lua? Here I will introduce ‘font goodies’
as a way out. Don’t hesitate to share your wish list during this presentation.

79

Hans Hagen: Why Structure Matters

There have always been lots of structure related commands in CONTEXT. In
MKIV much of the low level code has been reimplemented with future extensi-
bility in mind. This presentation will give an update of the status and a preview
of the future.

Hans Hagen: How LuaTEX And ConTEXt Proceed

As the development of LuaTEX and CONTEXT sort of go hand in hand there is
an ongoing change in the code that makes up CONTEXT. Some of the changes
and extensions are just proof of concept, others can will stay and can be used
freely. In this presentation I will discuss the things that were done recently.

Hans Hagen: Whatever You Want to Know

As usual there can and will be sessions where you can ask whatever you like
about CONTEXT, the (probably mostly unknown) tools that come with it, how
it is used or can be used, etc. Feel free to submit your questions in advance.

Hans Hagen: Requirements for Documentation

CONTEXT evolved out of our own usage: educational documents and general
documentation. This is why it is organized as it is. I will discuss a couple of
characteristics and how they can help you to separate content from rending
issues. I will show some sources and styles of manuals that relate to context.

Hans Hagen: My Slowly Growing Test Suite

It has become good practice that users post small examples on the mailing list
when they run into problems or provide solutions. I also make small test files
myself and for a while I've been collecting them. They are available to users and
can also serve as showcases. In due time Luigi will add the output to the module
collection that he maintains. I will give some demonstrations and we can discuss
how to make more examples and how to organize them.

Hans Hagen: XML Processing News

Part of the MkIV XML processing code has been rewritten. I will discuss and
demonstrate a few of the new (and changed) features. (Maybe I can/will use the
experimental MkIV BIBTEX code as an example.)

Hans Hagen: A ConTEXt Scoop

Normally new features are put into the kernel when they get stable. However, I
decided to keep the latest trick out till the conference so that those who attend
get the first view of it. Let’s see how long they can keep the secret.

80

Patrick Gundlach:

LuaTgX without TEX — or: the Hidden Beauty of TEX

With LuaTgEX you can typeset text without having to deal with TEX’s input
language. This is great, because you don’t need to take care of catcodes anymore,
you don’t have to \relax after dealing with complex macros, expansion is not
an issue anymore. In this talk I will present how to typeset text just by using
Lua(TEX)-functions and I will show some examples, such as the \boxit macro
from the TEXbook and how this could be done in Lua. This presentation does
not deal with CONIgXT at all.

Patrick Gundlach: contextgarden.net
This is a question and answer session on the current state of contextgarden.net.
This can be done in the evening when we have some tea or coffee.

Alan Braslau: Drawing Chemical Structures Using ppchTEX
Chemical formulas and chemical structures can be included in a ITEX or a
CONTEXT document easily using the ppchTEX macros. I present a simple intro-
duction to their use.

This package has been completely re-written in MkIV (not by me!) and is
now included in the core macros. The aim of this presentation is to stimulate
discussion as some further development could be useful.

Alan Braslau: Plotting Data with Metafun/Metapost

Data can be graphically presented using the METAPOST /graph macros. I pre-
sent here a simple introduction to their use in order to stimulate discussion on
the interest of these macros and to explore alternative solutions including the
possibilities to process numerical data through use of LuaTgX.

Alan Braslau: Drawing Diagrams Using the Chart Module

CoNTEXT provides a charts module to create flow charts. This module could be
extended to abstract positioning, somewhat akin to the drawing of tree diagrams,
very easily performed using TikZ. Other examples of diagrams of arbitrary con-
nected cells such as pneumatic or vacuum systems will be presented.

Willi Egger: Arranging Pages for Printing
Although e-readers are coming up it is still so, that typeset information very
often will have to be printed on paper. In order to make a final product one

81

needs to arrange the contents in such a way, that after folding the product
makes a professional impression. CONIEXT does not only do a great job by
typesetting, it offers also solutions to create a final product which can directly
be fed to a printer in the print house. In this session I will give an overview
on the currently available imposition schemes with special emphasis on flyers in
different presentations.

Wolfgang Schuster: The Letter Module

Where i got inspiration for the implementation (m-letter.tex and letterstyle.tex)
* layer system of the module (from internals to user interface),
* the user interface,
* workshop how to create your own style.

Wolfgang Schuster: Module Documentation
* Methods to document a module (in the code and as a separate document).
* How create your own command definitions (what you can see in setup-
en.pdf/cont-en.xml).

Arthur Reutenauer: The Ever-regenerating Hydra — Hyphenation
Patterns in Unicode, and beyond

The hyph-utf8 project was launched in the spring of 2008, as a means of ratio-
nalizing the situation of hyphenation patterns in TEX Live. Its goal at the time
was to convert all the patterns to UTF-8 so that X{IEX and LuaTgX could
use them directly, and to make them also available to non-Unicode-aware TEX
engines by converting them on the fly, in order to keep backward compatibility.
At that point, this effort was only useful to BTEX, because CONTEXT had been
using its own copy of the patterns, but it ultimately benefited from hyph-utf8
as well, as it could use it as the sole source for hyphenation patterns.

Since we started, the project’s scope has far outgrown its original purpose:
first, it was integrated in MiK'TEX shortly after we began (while our target at the
time was only TEX Live); and we also had the opportunity to add patterns for
languages that we never had before, coming from different sources. In particular,
several languages we added were, at best, extremely awkward to support in a
non-Unicode environment, and we thus decided to support them only as UTF-
8, in XHIEX and LuaTgX, without attempting to convert them to some 8-bit
encoding. This approach will hopefully help the TEX community in supporting
these languages better.

We also had the chance to work with other projects that use the same hy-
phenation algorithm as TEX: OpenOffice, for starters, whose relationship to TEX

82

is obvious, is the source for several of the “new” languages. There are also se-
veral implementations of the algorithm for Web browsers, with which we could
exchange material: their primary source for patterns are always TEX distributi-
ons, but they also received files from individual contributors; we thus added a
couple more languages thanks to them. Another program that uses our patterns
is Apache FOP (Formatting Object Processor), a document formatter driven by
XSL-FO.

It is our hope that hyph-utf8 can become a central source of material and
information on word hyphenation for all projects that may need them.

Karel Horak: Do It Better...

Collection of some mostly practical problems with solutions (often borrowed
from other people’s ideas) which all have one thing in common: get efficiently
any typesetting as good as possible.

Idris Samawi Hamid: Towards the First ConTpXt Book

Given the breadth of CONTEXT, and the growth of the CONTEXT community,
the need for a polished book that introduces its scope and power has become ever
more pressing. In this talk we intend to introduce an outline of this first major
CONTEXT book project, and to get input and suggestions from the participants
to help make it successful.

Idris Samawi Hamid: Oriental TEX Crosses the Rubicon.

Advanced Qur’anic Typesetting in MkIV

After years of research, the Oriental TEX Project can proudly announce that it is
closing in on the holy grail of paragraph-based Arabic typography. We illustrate
this by demonstrating the typesetting of the Qur’an in LuaTEgX and CONTEXT
MKIV. We also discuss some details of OpenType typesetting control in MkIV
as well.

83

Mobile TEX: Porting TEX to the iPad
TEX mobilné: migrace TEXu na iPad

‘I ARTHUR REUTENAUER I

Abstract: The paper presents the achievement of Richard Koch, amongst
others author of TEXShop and MacTEX developer, who has successfully
compiled and used TEX on Apple’s iPad.

Key words: TEX-8, CONTEXT, iPad.

Abstrakt: Clanek ndm pfedstavi Gspéch Richarda Kocha, mimo jiné autora
programu TEXShop a distribuce MacTgX, kterému se podafilo zkompilovat
apouzit TEX na iPadu od firmy Apple.

Klicova slova: TEX-8, CONTEXT, iPad.

arthur (dot) reutenauer (at) normalesup (dot) org
Allée du Torrent

Zone Tokoro

05000 GAP

France

84 doi: 10.5300/2011-2-4/84

With lots of help from Richard Koch

Introduction

Over the 2° years of its existence, TEX has been ran on many platforms and has always been noted for
its portability, so it's not surprising that when new devices appear, TpX would soon be ported there,
too.

Today a new kind of device is in wide use that links computers to telephones and that represents
a new challenge on the path of TgX because of reasons both technical and ergonomic, the so-called
“smartphones”. But it may sound insane to want to use TgX on a Blackberry or a Nokia N97—although
word on the street is that Jonathan Kew, author of XjTgX and TgXworks, ported TgX to the iPhone last
year—so that's not exactly what | will talk about here.

I will present the achievement of Richard Koch, amongst others author of TeXShop and MacTgX
developer, who has successfully compiled and used TgX on Apple's iPad.

The latter does of course not qualify as a smartphone per se, but it shares a lot of features with
them, above all the aim at mobility, while having the advantage of giving the user an experience closer
to that of an actual computer. The iPad port of TgX, called TgX-8, should therefore give a good idea of
what “mobile TgX” could be. It might even be that TgX-8 could be copied to the other Apple mobile
devices with only minor changes (who wouldn't want to run TgX on an iPod touch?), but | will stick to
describing the experiments | made, thanks to Richard, on the iPad, and hint that they would probably
also apply to the other iThingies.

There are a number of issues arising from this task, that indeed could be qualified as Herculean.
The way programs work on the iPad is that they're made into “applications” from which you control
everything. It is the single entry point to the program, and in fact the only way we can interact with
the operating system, because we can't run two applications at the same time. This of course doesn't
mean that we can't program many things into an application, but it gives a very different touch: for
TeX to be made into an iPad application, we have to embed not only the TgX program itself, the format
file and the whole distribution into it, but also the editor itself! If we used a different application to
edit the source file, TEX-8 couldn't access it because of Apple's very restrictive policy.

Hence, the interesting issue is that, while all the pieces we need are obviously already available,
and the story of writing an iPad application for TEX mostly is the description of how we put the pieces
together, it also consists not in small part in crucial design choices aiming at crafting a reasonable user
interface.

A word of warning before we proceed to the description proper: | wanted to introduce this
project today but it is yet very much a work in progress, and | cannot present anything else than a
snapshot of the current development stage. | thus ask the reader to take the following pages with a
little bit of salt. All the advertised features, or lack thereof, | review here, will, no doubt, be greatly
improved in the future.

85

So here goes.
A user-friendly interface

A rich text editing environment

The natural entry point to TgX on the iPad seems to be the source code, and TgX-8 thus opens on the
editor window, that displays by default a document stored in the aplication about Sylow theorems in
group theory. The whole window is a text area, and the iPad virtual keyboard pops up, so that we can
type. Typing on the iPad is “not for sissies”, in Richard's words, and typing TgX code is rendered even
more awkward by the fact that many of TgX's special characters that are ubiquitous (“\"*{’‘}" amongst
several others) are not present on the default keyboard, but demand instead, in order to be typed,
that one switch keyboard twice (using two different toggle keys), which would make the typing of any
serious TeX document extremely painful. In order to remedy that, Richard devised an additional row on
top of the standard keyboard, that pops up and disappears together with it. Though | personally regret
that the simulated keys don't make the nice keyboard-like sound when tapped, they are immensely
helpful and make for a reasonable tradeoff if one needs to type actual input on the iPad.

Another standard iPad feature that could come in handy at that point would be auto-correc-
tion of the typed input. It behaves like some kind of aggressive spell-checker, automatically correcting
any words the user types, unless the latter directs otherwise. Having personally experienced how this
behaviour can have very disruptive effects in some places (when typing URLs, for example), | don't
especially recommend to turn it on by default, but it can be useful if one is typing lengthy text in a
natural language, and could have spared me to have written “The whoel ndow ia a text grea, and the
ipad keybaoadr popz up, so thqt we cqntpe.” when | first typed the above paragraph.

Apart from that feature, the editor is very basic since it borrows from the standard TextEdit
application for typing plain text, and has therefore none of the capabilities one may expect from a
development enviroment for TgX, apart from a “typeset” button that has the obvious effect. Encoding
support is also very poor.

It should also be noted that for the moment, the TgX run freezes everything in the editor and
doesn't stop until it completes its task: one can neither use the editor, nor interrupt TgX as it runs.

A convenient file browser

It is yet quite cumbersome to upload files on the iPad. As | have not tried it personally—or rather | did
try, but nothing worked—I simply copy the notes by Richard:
My intention is that there will be three ways to proceed:

a. Load and unload in iTunes, connecting to a regular Mac.
b. Mail source and output into the iPad and back out.

c. Other suitable programs on the iPad can send source to TgX-8, and TgX-8 can send source and output
to them. Then these programs can communicate with the outside world.

86

But c) isn't working at all, and b) is only working in the sense that you can mail both source and
PDF out of TgX-8.

The iTunes method seems to be currently limited by Apple. Here's how it works. When you connect
the iPad to iTunes, you'll see a list of programs which can communicate, and TgX-8 will be listed. You
will see a list of folders, one for each program. For instance, one folder will be labeled “Mordell”. You
cannot look inside these folders in iTunes, but you can drag one of the iTunes window to your desktop or
elsewhere. If you drag, say Mordell, then you'll get a folder containing the source, the PDF output, the log
and sync files, and all the illustrations. So this method is clumsy but works to get stuff out of the iPad.

Unfortunately, Apple's software doesn't allow you to drag folders back in. You can only drag indi-
vidual files in. | suppose the way to handle that is to zip up a folder and then drag the zip in and have
TeX-8 unzip it to a folder the next time it runs. But for now, here's what you can do:

Drag your source and all supplemental files (i.e., illustrations) to TgX-8 in iTunes. Make sure you
only drag one . tex file (no input tex files allowed). The next time TgX-8 starts, it will look for a . tex
file. If one and only one exists, it will create a folder with that name and put all the other files in that
folder.

That's the only current method to get illustrations into the machine.

A feature-full previewer

The preview window allows us to see the PDF file produced by TgX (for the moment, we use PDF as
the only output format). We can slide back and forth through the pages, using a standard iPad feature.
There is also a button to go to a specific page number, and two other buttons, to jump to the first and
the last page. And that's all.

tio(The Sylaw Theorsms
\wumar{Fichard Koeh)
\Gate(Gompied by Artur R

oaginidocumont
kit

Wesction)
“eubsecionl:

\sestionfnroducton)
T i strange. We have several hngs (o say. We il do even more.

Bt e

an
ordr of 55,

A casior aigobralc XAl & Tho &ymMGNTC group on § litors, §5._S8, which has order 120 but

00000000080000000

oo def-d-0-0o] Qo]-]<]
A s ol i el flx]e] o]

(ol z 0 xlclhvlclnlvl H20 o

Figure 1 Editing a TpX file on the iPad

87

No, really. That's all.

A this point of development, there is no search feature and also no magnification possible of the
page. And, as has already been hinted, the typesetting process gives absolutely no feedback to the user:
TeX doesn't display the output as it does on other systems, and the log file, though stored on disk as
usual, is not accessible at all. What's more, if compilation fails but some PDF file was already produced
by earlier runs, the user is presented with that file, which is a rather confusing behaviour.

The diligent reader may wonder what “TgX” we really used in all of the above, so let the audince
be reassured: we can of course use ConTpXt with TgX-8, just as IXTEX and plain TgX; for the moment | only
experimented with Mark II, though, as | have only been able to use pdfTgX as the underlying engine.

A well-designed programming interface

Now to some technical issues: the main problem one is faced when making TgX into a iPad application
is that you simply can't run TgX as a separate process from the application. Apple policy forbids it. You
need to make a library out of the TgX program, and to call the main function (the entry point to any
program written in C) from the application. And TgX is not thought out for that use, which makes that
task awkward, even if of course possible. A funny issue is that, for example, in the sources for pdfTgX
which Richard took, there are two functions that are called main (in texk/web2c/1ib/main.c
and texk/web2c/1ib/texmfmp. c in the source hierarchy, respectively); but of course only one
is the real entry point to the TgX program. Another much more serious problem is memory manage-
ment. Because traditionally each TgX run has been autonomous, TeX's memory doesn't need to be
managed so meticulously and one can rely on the operating system to clean up TgX's memory upon
exit, because TpX calls the C library function that is in fact called exit and that takes care of that.
When TgXis used as a library, though, calling exit shuts down the entire program, therefore killing
the editing window, and returning to the iPad “Home Screen”, which is a bit ridiculous; and while the
solution to this particular problem is obvious and immediate to implement (just remove the call to
exit), the underlying problem remains: TeX's memory isn't cleaned up and the system loses track of
it after the processing, leading to memory leaks. These leaks are in fact so important that the limited
iPad memory (256 megabytes), while vastly sufficient for any single run of TgX, can't handle the next
run and, as of today, you can't yet run TgX twice in a row. You need to quit the application and relaunch
it. Thankfully, the application reopens in the exact same state as it was wen we left it. This is of course
far from optimal, and unlike most of the problems outlined above, it will take work to be solved; but
we shouldn't despair.

Other than that, the typesetting speed is reasonable (for the first and only run), which is not that
suprising: though limited compared to today's computers, the iPad resources are stillimmensely more
powerful than what was available thirty years ago, when TgX was first developed.

Finally, as has already been said, we used pdfTgX; | have managed to compile LuaTgX as a li-
brary as to use for compiling simple documents, but, aside from having one more main function (in
texk/web2c/luatexdir/luatex.c, as it is), the memory management problems are even

88

worse than with pdfTgX, and when | tried it, the application systematically crashed towards the end of
the run.

Conclusion

This is thus the point where we are now. As a conclusion | would like to quote Richard's words:

“[...] in the iPad world, | don’t know the right approach. This machine seems like a new category
to me—one that will take several years of experiments before we know what works best. It is more a
minimalist machine, and | suspect the best programs will be those that throw away features we have
come to depend upon to concentrate on a few new paradigms. But | don’t know what they will be.”

Having been lucky enough to test the application and to use it to typeset a few documents of
my own, | fully subscribe to this opinion, of course: the user interface is lacking in many respect at this
early stage of development stage, but it will take (programmer) time and (user) experience to improve
it and make it really usable.

One thing we certainly shouldn't do, for example, is to port indiscriminately all the capabilities
of TeX editors and PDF previewer directly to the iPad application, that would certainly not give a very
enjoyable experience.

As a simple example, let us consider the problem of error reporting. While dealing with the
problem of a faulty TgX run is straightforward (we just display an error message to the user if the PDF
file is not newer than the TgX source), it is not immediately obvious—at least to me—how to display
the log file to the user: it should of course be available in some way to people wanting to know what
exacly went wrong, but do we need to display the full output of the TgX run, like we have when we
run TgX in a terminal window, or from a specialized editor like TeXMaker or TeXworks? I'm not sure
it is really useful, nor even desirable, on such a minimalist device as the iPad (not to mention actual
smartphones, where it would probably be unreadable). Thus, for the moment, TgX runs in “non-stop
mode”, as if one had typed ‘s’ during an interactive run, and returns even if it produces no PDF (as
opposed to waiting for the user's input to complete its task).

And when it comes to the future, | like to think that experimenting with TpX on unusual platforms
is a chance to think about new ways to use TgX, and that ConTgXt, that has already been providing
complete chaintools in TgX processing for decades, is certainly well prepared for such a challenge!

Figure 2 Xcode sources for TgX-8

89

Figure 3 The TgX-8 application in its natural habitat

Playing with Flash in ConTpXt-mkiv
Animace ve Flashi pomoci ConTEXt-mkiv

‘l LUIGI SCARSO I

Abstract: Starting from release 9 AdobeReader, the reference PDF viewer
from Adobe, has a Flash player embedded. The recent addition to CTAN
of flashmovie package by Timo Hartmann prompted me to investigate the
feasibility of an integration between ConTEXt-mkiv and swf figures. All
tests were performed under Linux Ubuntu 8.04 with AdobeReader 9.3.3
installed, but I suppose they also work under Windows or Mac operating
systems.

Keywords: Flash, Flash animation, ConTgXt, Mark IV, Lua

Abstrakt: Clanek pfedstavuje jednu z moznosti, jak vlozit animace vy-
tvorené ve Flashi do PDF. Pouziva na to ConTEXt-mkiv, ktery vyuziva
programovaciho jazyka Lua.

Klicova slova: Flash, animace ve Flashi, ConTEXt, Mark IV, jazyk Lua

Introduction

In the Issue 2010, Number 1 of th PracTEX journal I have published a first
tentative to support SWF files in ConTEXt-mkiv. It was a literal translation
of the flashmovie.sty stylesheet [2] and the result was an unusual mix of
pdflATEX and ConTgXt-mkiv code, but the main reason was to gain a good
knowledge of the specifications and to test some applications. Just before the
article was published Hans translated the stylesheet into the ConTEXt-mkiv
lingo, so ConTEXt users can already use the swf files as figures: what I suggest
here is a all-or-nothing way to implement the requirements of specification and
also show some applications.

Implementation

The first step to support SWF files as external figures in ConTEXt-mkiv is to
register the swf interface into the grph-inc.mkiv file with \registerctxluafile:

doi: 10.5300/2011-2-4/91 91

grph-inc.mkiv:
\registerctxluafile{grph-swf}{1.001} 7% this will change

Inside grph-swf.lua the function figures.checkers.swf(data) inserts the anno-
tation object that identifies the swf figure using the good old \pdfannotation
macro instead of a Lua function node.write(pdfannotation(width,-height,
0,annot())) (the code is commented, as one can sees), but it’s one of the fews
still present:

grph-swf.lua:
local format = string.format
local texsprint = tex.sprint
local ctxcatcodes = tex.ctxcatcodes
local pdfannotation = nodes.pdfannotation
function figures.checkers.swf (data)
local dr, du, ds = data.request, data.used, data.status
local width = (dr.width or figures.defaultwidth):todimen()
local height = (dr.height or figures.defaultheight):todimen()
local foundname = du.fullname
local controls = dr.controls or nil
local display = dr.display or nil
dr.width, dr.height = width, height
du.width, du.height, du.foundname = width, height, foundname
texsprint (ctxcatcodes,format(
"\\ startfoundexternalfigure{’ssp}{/%ssp}",width,height))
local annot, preview, ref = backends.pdf.helpers.insertswf {
foundname = foundname,

width = width,
height = height,
-- factor = number.dimenfactors.bp,
display = display,
controls = controls,
-- label = dr.label,

}
-- node.write(pdfannotation(width,-height,0,annot()))
texsprint (ctxcatcodes,format ("\\ pdfannot width %ssp height %ssp {/s}",
width,height,annot()))
-- brrrr
texsprint(ctxcatcodes,"\\ stopfoundexternalfigure")
return data
end
figures.includers.swf = figures.includers.nongeneric
figures.registersuffix("swf","swf")

Actually the code before is modification of mine, where I've simply uncom-
mented the display and controls variables because I need them later. The com-
plete specifications consist of the PDF Reference sixth edition book and Adobe®
Supplement to the ISO 32000 BaseVersion: 1.7 ExtensionlLevel: 3 both available

92

from [1]. The chapter 9.6 Rich Media of the Supplement describes the additional
entries of the RichMedia annotation dictionary, and it’s the guide to what follow;
carefully reading of the RichMedia chapter and the code below reveals that there
is almost an one-to-one map between the specifications and the implementation
that is done by the Lua tables:

local format = string.format

local pdfconstant = lpdf.constant

local pdfboolean = lpdf.boolean

local pdfstring = lpdf.string

local pdfunicode = lpdf.unicode

local pdfdictionary = lpdf.dictionary

local pdfarray = lpdf.array

local pdfnull = lpdf.null

local pdfreference = lpdf.reference

function backends.pdf.helpers.insertswf (spec)
local width, height, filename = spec.width, spec.height, spec.foundname
local controls = spec.controls or nil
local display = spec.display or nil

if controls = 'no' then
if (parametersets[controls].replace_helper == true) and
(type (parametersets[controls] .private_helper) == "function") then

local annotation
annotation = parametersets[controls].private_helper(spec)
return annotation,nil,nil
end
end
local eref = backends.codeinjections.embedfile(filename)
local configuration = pdfdictionary {
Type = pdfconstant ("RichMediaConfiguration"),
Subtype = pdfconstant("Flash"),
Instances = pdfarray {
pdfdictionary {
Type = pdfconstant ("RichMediaInstance"),
Subtype = pdfconstant("Flash"),
Params = pdfdictionary {
Type = pdfconstant ("RichMediaParams"),
-- FlashVars =
Binding = pdfconstant ("Foreground")
},
Asset = eref
1,
},
}
local configuration_ref = pdfreference(pdf.immediateobj(tostring(configuration)))
local content = pdfdictionary {
Type = pdfconstant ("RichMediaContent"),
Assets pdfdictionary {
Names = pdfarray {
pdfstring(filename),

93

eref,

}
},
Contents = pdfarray { configuration_ref },

}

local content_ref = pdfreference(pdf.immediateobj(tostring(content)))
local settings = pdfdictionary {

Type = pdfconstant ("RichMediaSettings") ,
Activation = pdfdictionary {
Type = pdfconstant ("RichMediaActivation"),
Condition = pdfconstant ("P0"),
Animation = pdfdictionary {
Subtype = pdfconstant("Linear"),
Playcount = 1,
Speed =1,
}’

Configuration = configuration_ref,
Presentation = pdfdictionary {
PassContextClick = true,

Style = pdfconstant ("Embedded"),
Toolbar = false,
NavigationPane = false,
Transparent = true,
Window = pdfdictionary {
Type = pdfconstant ("RichMediaWindow"),
Width = pdfdictionary {
Default = 100,
Min = 100,
Max = 100,
1,
Height = pdfdictionary {
Default = 100,
Min = 100,
Max = 100,
1,
Position = pdfdictionary {
Type = pdfconstant ("RichMediaPosition"),

HAlign = pdfconstant("Near"),
VAlign = pdfconstant("Near"),

HOffset = O,
VOoffset = O,
}
}
}
},
Deactivation = pdfdictionary {
Type = pdfconstant ("RichMediaDeactivation"),
Condition = pdfconstant("XD"),
},

94

local settings_ref = pdfreference(pdf.immediateobj(tostring(settings)))
local annotation = pdfdictionary {
Subtype = pdfconstant ("RichMedia"),
RichMediaSettings = settings_ref,
RichMediaContent = content_ref,
}
return annotation, nil, nil
end

RichMedia annotations have a huge set of options and the more conveni-
ent way to manage them is by a Lua table: ConTEXt-mkiv has an experimen-
tal mechanism that uses the global table parametersets to store and retrieve
the values. What follow is not the canonical syntax \startluaparameterset
[<namespace>] . .\stopluaparameterset but a Lua version that is essentially
the same:

\startluacode parametersets["swf:Main:controls:1"] = {
replace_helper = true,
private_helper = document.lscarso.insertswf
\stopluacode
\externalfigure[Main.swf] [width=320px,height=180px,controls=swf:Main:controls:1]

The idea is clear: there is only one option controls instead of many keys/
values and this option “points” to a dictionary of keys/values. ConTEXt-mkiv
has also another option display, because the idea is a clear separation between
presentation and control, but I’ve not used it in my implementation. The stan-
dard support for swf figures doesn’t manage the option controls, so I have added
my own code:

local controls = spec.controls or nil
local display = spec.display or nil

if controls = 'no' then
if (parametersets[controls].replace_helper == true) and
(type (parametersets[controls] .private_helper) == "function") then

local annotation
annotation = parametersets[controls].private_helper (spec)
return annotation,nil,nil
end
end

Now it’s time to explain what I mean with “all-or-nothing”. If you want just
use a swf figure just do nothing, i.e. \externalfigure[Main.swf] is suffice. But
if you need to specify some options then you must pass them to externalfigure
together with all the defaults ones, and a way to pass different options is just
replace the Lua function backends.pdf.helpers.insertswf (spec) with a pri-
vate implementation document . lscarso.insertswf by storing its reference into
the swf:Main:controls:1 table. This is the meaning of

95

\startluacode
parametersets["swf:Main:controls:1"] = {
replace_helper = true,
private_helper = document.lscarso.insertswf

}
\stopluacode

replace_helper = true is hence a signal to backends . pdf .helpers. insertswf
(spec) to replace itself with the private implementation document.lscarso
.insertswf (spec). A trivial implementation of document.lscarso.insertswf
(spec) is almost a copy of the standard backends.pdf.helpers.insertswf
(spec):

\startluacode

document.lscarso = document.lscarso or {}

function document.lscarso.insertswf (spec)
local format = string.format

local pdfconstant = lpdf.constant
local pdfboolean = lpdf.boolean
local pdfstring = lpdf.string
local pdfunicode = lpdf.unicode
local pdfdictionary = lpdf.dictionary
local pdfarray = lpdf.array
local pdfnull = lpdf.null

local pdfreference = lpdf.reference
local width, height, filename = spec.width, spec.height, spec.foundname
local controls = spec.controls or nil
local display = spec.display or nil
local eref = backends.codeinjections.embedfile(filename)
local configuration = pdfdictionary {
Type = pdfconstant ("RichMediaConfiguration"),
Subtype = pdfconstant ("Flash"),
Instances = pdfarray {
pdfdictionary {

Type = pdfconstant ("RichMediaInstance"),
Subtype = pdfconstant ("Flash"),
Params = pdfdictionary {

Type = pdfconstant ("RichMediaParams"),

Binding = pdfconstant ("Foreground")
1,
Asset = eref
},
3,
}

local configuration_ref = pdfreference(pdf.immediateobj(tostring(configuration)))
local content = pdfdictionary {

Type = pdfconstant ("RichMediaContent"),
Assets = pdfdictionary {
Names = pdfarray {
pdfstring(filename),

96

eref,
}
1,
Contents = pdfarray { configuration_ref },

}
local content_ref = pdfreference(pdf.immediateobj(tostring(content)))
local settings = pdfdictionary {

Type = pdfconstant ("RichMediaSettings")
Activation = pdfdictionary {
Type = pdfconstant ("RichMediaActivation"),
Condition = pdfconstant ("P0"),
Animation = pdfdictionary {
Subtype = pdfconstant("Linear"),
Playcount = 1,
Speed =1,
1},

Configuration = configuration_ref,
Presentation = pdfdictionary {
PassContextClick = true,

Style = pdfconstant ("Embedded"),
Toolbar = false,
NavigationPane = false,
Transparent = true,
Window = pdfdictionary {
Type = pdfconstant ("RichMediaWindow"),
Width = pdfdictionary {
Default = 100,
Min = 100,
Max = 100,
},
Height = pdfdictionary {
Default = 100,
Min = 100,
Max = 100,
}’
Position = pdfdictionary {
Type = pdfconstant ("RichMediaPosition"),

HAlign = pdfconstant("Near"),
VAlign = pdfconstant("Near"),

HOffset = O,
VOffset = 0,
}
}
}
},
Deactivation = pdfdictionary {
Type = pdfconstant ("RichMediaDeactivation"),
Condition = pdfconstant("XD"),
},

}
local settings_ref = pdfreference(pdf.immediateobj(tostring(settings)))

local annotation = pdfdictionary {
Subtype = pdfconstant ("RichMedia"),
RichMediaSettings = settings_ref,
RichMediaContent = content_ref,
}
return annotation, nil, nil
end
\stopluacode

The rationale behind this implementation is that most of the time the user
wants to specify only some keys/values, but sometimes a bit of programming is
required, as for example to calculate the indirect reference of an object. Needless
to say that Lua is almost perfect for this, so it seemed to me a natural solution
to delegate the user to write the appropriate function (in this way he must know
the options and their meaning) and let ConTpXt-mkiv replace the standard
implementation with the user’s one.

Application

As simple application, I've considered the programs as3compile and swfc from
the swftools suite [4]. The goal is to achieve something similar to METAPOST:
typeset the code and straight insert the result into the pdf, where in this case the
code is ActionScript3 code that is compiled into a swf figure with the as3compile
compiler, an external program. The implementation is also simple: the Action-
Script code is enclosed between a couple of start/stopSWFtoolsAScode macros
(with some options as the name of the script and the path of the compiler) that
are in turn almost a verbatim copies of start/stopluacode macros:

\long\def\dostartSWFtoolsAScode [#1]

{\getparameters[as.] [name={out-as},preamble=preamble,compiler=as3compile,#1]%

\begingroup

\obeylualines %% yes, lua

\obeyluatokens %% yes, lua

\dodostartSWFtoolsAScode}
\long\def\dodostartSWFtoolsAScode#1\stopSWFtoolsAScode

{\normalexpanded{\endgroup\noexpand\dododostartSWFtoolsAScode [#1]}}%
\long\def\dododostartSWFtoolsAScode [#1]{

\startluacode
local preamble = ''
local outfile = tostring("\csname as.name\endcsname") .. ".as"
local swffile = tostring("\csname as.name\endcsname") .. ".swf"

local ascompiler = tostring("\csname as.compiler\endcsname")
local asscript_body = [=[#1]=]

print('")

local asscript = preamble .. asscript_body
io.savedata(outfile,asscript)

98

as_execute = string.format("\%s \/%s -o \%s ",ascompiler,outfile,swffile)
os.execute(as_execute)
\stopluacode’,
}
\unexpanded\ef\tartSWFtoolsAScode{\ostartSWFtoolsAScode} % lua catcodes
\startSWFtoolsAScode [name=smile,
compiler={/opt/luatex/minimals-2010-brejlov/tex/texmf-project/bin/as3compile}]
package
{ import flash.display.MovieClip
public class Main extends MovieClip
{ function Main()
{ this.graphics.beginFill(0xcccc00)
this.graphics.drawCircle(200,200,200)
this.graphics.endFill()
this.graphics.beginFill(0x000000)
this.graphics.drawCircle(140,150,50)
this.graphics.drawCircle(260,150,50)
this.graphics.drawRoundRect (140,270,120,10,20);
this.graphics.endFill()

}
}
\stopSWFtoolsAScode
\externalfigure[smile.swf] [width=100px,height=100px]

We should also supply a default representation for the viewers that are unable
to display swf figures, but this time it’s not necessary to specify complicated
options: just use the mode feature of ConTEXt as in the following example

\startmode [Flash]

\externalfigure[smile.swf] [width=100px,height=100px]
\stopmode

\startnotmode [Flash]

\externalfigure[smile.png]

\stopnotmode

The same approach can be used to implement the start/stopSWFtoolsSCcode
macros where the code is a swf script and the compiler is swfc (both are propri-
etary of switools, see [5]):

99

\startSWFtoolsSCcode [name=action,
compiler={/opt/luatex/minimals-2010-brejlov/tex/texmf-project/bin/swfc}]
.flash filename="action.swf" bbox=300x300 fps=50
.box mybox color=blue fill=green width=100 height=100
.put mybox
.frame 1
.action:
_root.angle += 0.05;
mybox._x = 100*Math.cos(_root.angle)+100;
mybox._y = 100*Math.sin(_root.angle)+100;
.end
.frame 2
.action:
gotoFrame (0) ;
Play();
.end
.frame 3
.end
\stopSWFtoolsSCcode
\externalfigure[action.swf] [width=150px,height=150px]

Conclusion

From the point of view of a traditional (i.e. not TEX) programmer ConTEXt-mkiv
has a neat approach for implementing the PDF specifications. The Lua language
is small and complete, and the PDF specifications itself are clear enough: the pro-
blem arises with the rendering of the document. On average, a free PDF viewer
other than AdobeReader has not the capability to show a RichMedia content and
the printing of the pdf can be also problematic, so we must supply the correct
alternative content at least with the modes mechanism. Following the same way
of start/stopSWFtoolsAScode it is possible to implement a start/stopFlexAS
code (see [6]) which is the preferable to the swftools compiler due some incom-
patibilities in the implementation of the ActionScript3 language.

100

References

[1] Adobe: PDF Technology Center. Available at URL: http://www.adobe.com/devnet/pdf/
[2] TiMO HARTMANN: The flashmovie package. Available at URL:
http://www.ctan.org/tex-archive/macros/latex/contrib/flashmovie

[3] Luicr Scarso: Playing with Flash in ConTEXt-mkiv. In The PracTgX Journal, Vol. 5,
No. 1, 2010. ISSN 1556-6994. Available at URL:

http://www.tug.org/pracjourn/2010-1/scarso

[4] SWFTools — SWF manipulation and generation utilities.
Available at URL: http://www.swftools.org

[5] SWFC Manual. Available at URL: http://www.swftools.org/swfc/swfc.html
[6] Adobe: Adobe Flex. Available at URL: http://www.adobe.com/products/flex

luigi (dot) scarso (at) gmail (dot) com
Padova, Italy

101

MicroTalk — pdfsplit
MicroTalk — pdfsplit

‘l LUIGI SCARSO I

Abstract: MicroTalk is a short and technical paper that shows some
unusual, hopefully useful, ideas following the schema “figure to code”.
The main topic is always typographic programming in ConTEXt & Lua.
A bit of Lua code, the \clip macro and Leptonica extensions are the
ingredients for this recipe to cook a pdfsplit macro that take a pdf and
try to split into parts as the \vsplit does with \vboxes.

Key words: Lua, Leptonica, PDF slicing, SWIG, MuPDF, Sumatra.

Abstrakt: Clanek poukazuje na zptisob nafezani PDF na prouzky tak,
jak je to znamé pomoci prikazu \vsplit s \vboxy.

Klicova slova: Lua, Leptonica, vysekavani z PDF, SWIG, MuPDF, Su-
matra.

References

[1] Leptonica. Available at URL: http://www.leptonica.com/

[2] MuPDF - a lightweight PDF viewer and toolkit written in portable C.
Available at URL: http://www.mupdf . com/

[3] Sumatra PDF. Available at URL:
http://en.wikipedia.org/wiki/Sumatra_PDF

luigi (dot) scarso (at) gmail (dot) com
Padova, Italy

102 doi: 10.5300/2011-2-4/102

1 Slice a pdf

Let’s start with a bit of Lua code:

\startluacode
document.lscarso = document.lscarso or {}
function document.lscarso.LuaSliceIt(Fig,H,W,L,Fig0Opt)
local H = math.floor(string.gsub(H,"pt","")*2716)
local W = math.floor(string.gsub(W,"pt","")*2716)
local L = math.floor(string.gsub(L,"pt","")*2716)
local vh = 0
local step = L
local h = step
local S = ""
local FigOpt = FigOpt or ""
while vh <= H do
S =string.format ("{\\clip[voffset=\Jdsp,
width=\%dsp,
height=\%dsp]
{\\externalfigure[\%s] [\%s]}}
\\par\\nointerlineskip\\blank[1sp]l",
vh,W,h,Fig,FigOpt)
tex.sprint (tex.ctxcatcodes,S)
vh = vh + step
end
if math.mod(H,step) > O then
vh = vh - step + math.mod(H,step)
S =string.format ("{\\clip[voffset=\%dsp,
width=\%dsp,
height=\%dsp]
{\\externalfigure [\%s] [\%s]}}
\\par\\nointerlineskip\\blank[1sp]l",
vh,W,math.mod(H,step) ,Fig,FigOpt)
tex.sprint (tex.ctxcatcodes,S)
end
end
\stopluacode

document.lscarso.LuaSliceIt takes a pdf and “slices it” with slices of height L

103

\bgroup
\newdimen\Hfig \newdimen\Wfig

\setbox1000=\hbox{\externalfigure[mill.png] [width=\textwidth,
height=1.3\textheight]}

\Wfig=\wd1000 \Hfig=\dimexpr\ht1000+\dp1000\relax%
\ctxlua{document.lscarso.LuaSliceIt("mill.png","\the\Hfig",
"\the\Wfig","\the\dimexpr 1.0\lineheight\relax",

>

"width=\\textwidth,height=1.3\\textheight")}
\egroup

It’s not a problem with images:

——.dhn—_~_-LLt‘=‘;

]

[
I

I

104

But uniform slicing is wrong with text:

0
1 83711

ém = 37730 — 3019677344877344877344677345

00
o1 1463919079240 471092976836108

2,571 2016705150200304077447 16500090661706360472 102/ 020/ I0030 17952 TEN

K1 41955696676761356111530606151370732349445617467329193399143372019)

4‘; x+1 749502901196827228266820481792118993292919127408542808267329424000

= 5597803 T05200170T87965715973

& _-1*__ 58630135791001973169852284

N
(L 2v+1 " 18472920064106597929865025 1 S

300

—1
9v——‘.|94
Lo+t
3000
N
Lyatl
30000
- =33 99369;
46 2x+1
o
— = 314150508A91201 12519

105

EET
ETIT
23 ——— = 3.141592986923015460712643380
XLzs x+ T
We can enumerate each slice, and observe that it depends only on the given step:
with step = 1.0\lineheight we have
A 23711 001
D 57 = 35535 = J0I967734467734467 7344677345
= 00
RS 4 1462919079240 24710920768361083 ER— 003
éxﬂ = 251670315926038407744716566098661706369472 - 00077386301 00
RS 1 4195569667676135011153969815137073234044561746732919339914337201927 — 00!
[¥+1 749502901196027220266620401792 110993202919 127400542000267320424000 00 100200 1101079637 0
S* 1% 58630135791001973169852284 _ 007
L 2e+1 19472920064106597929865025 1 0 ro0 0 AT w0
S : : 009
Lo+l
0 011
o0
oo 011
45 241
- 01
oo
v 4323615395365 013
L+t
014
TR
L 3141505086912015488462612514 015
Zy w1
01
W
i = 3141592986923015460712643380 017
XL:a X+ 1
01,
019
[0)

It’s now clear that 002, 004, 006. . . are good break points while 001, 003, 005. .. must
be avoided:. if we collect all good break points we can then subdivide the pdf into
the right \vboxes. These break points depend on lineheight, but we can choose
another step, let’s say 2mm, so that slices are independent from the body font:

\bgroup

\newdimen\Hfig \newdimen\Wfig

\setbox1000=\hbox{\externalfigure [pari_example.pdf] [width=\textwidth]}

\Wfig=\wd1000 \Hfig=\dimexpr\ht1000+\dp1000\relaxy,

\ctxlua{document.lscarso.LuaSliceItNR("pari_example.pdf","\the\Hfig",
"\the\Wfig", "\the\dimexpr 2mm\relax",
"width=\\textwidth")}

\egroup
1l

S 2

— = = 3.019877344877344877344877345 3
K x+ 1 0
Lo
N T T463919079240 Z71092976836108:

- (9866170636947 _ 0 ' = 0T TOORITR TR
T

106

ko 1 419556966 135811153969815137073234944561746732919339914: 019 1
> = = = 5.597803105200170187965715973
= 3173842 190° 224140
0
N =T
Liox+1
=t
~ 2.
@) ——— = 3.1419Z58758397901512712000 ¥i
=0 2
LU
= 3.1416259; 1204 815
n L — 858 993692
300000
N 2 14159593691201 519
4; 241
N T
B s = 3THI5Y2986Y230TST607 12643350
i
4
We group together slices 1,5,9,13,14,18,22,26,31,35,39:
0
i LB 5 019877344877344677344877345
x 1 T 27720
- Q05
1463919079240743966268954674710929768361083
781670315920038407744716560090661706360472 10 21 0007730630161795216666 009
N° 1 4195569667676135811153969815137073234944561746732919339914337201927 5.597803105200170187965715973
+1 749502901196827228266820481792118993292919127408542808267329424000 - 013
01
B S _-I'__ SU60135791001973 169652204 = 3.173842337190749408690224140
Z 2x+1 18472920064106597929865025
01
300
iy
42 = 3.144914903558851799204586212
2+ ©
3000
TS
42 ——— =3.141925875839790151271200075
2+l
= 02
30000
f z T 3141625085812043238153993602
Lyl T
03
EITI.
——— =3.141595986912015488462612519
1
° 035
swoo0
f Sy = 3141592986923015460712643360
039
()
Now slicing works well:
001
83711
37530 = 3.019877344877344877344877345
00X
N> 1 1463919079240743966268954674710929768361083 — 51972785077386301617952 16686
281670315928038407744716568098661706369472 -
009
4195569667676135811153969815137073234944561746732919339914337201927
= 749502901 1960272202660204517921 109932929 1912740854Z000267320424000 027 003 105200170167965715973 01
(01
£
—1* _ 58630135791001973169852284
42 Txr1 18472920064106597929865025 | o1 o0+2337190749406690224140
[0l

107

300
1
AZ ——— = 3.144914903558851799204586212
2x+1
¥ 02!

3000
_qx

AZ —— = 3.141925875839790151271200075

< 2x+1 024

w0
i Z T 3141625985812043238153993692
2, 21

031

o
i z —— = 3.141505986912015488462612519
L, 21

035

3000000

i z S 3141592986923015460712643380
£, 2+l

03
01

\bgroup

\newdimen\Hfig \newdimen\Wfig

\setbox1000=\hbox{\externalfigure[pari_example.pdf] [width=\textwidth]}

\Wfig=\wd1000 \Hfig=\dimexpr\ht1000+\dp1000\relax%

\startluacode

document.lscarso.GoodPoints = {1,5,9,13,14,18,22,26,31,35,39}

\stopluacode

\ctxlua{document.lscarso.LuaSliceItAndCollect("pari_example.pdf",
"\the\Hfig","\the\Wfig","\the\dimexpr 2mm\relax",
"width=\\textwidth","")}

\egroup

function document.lscarso.LuaSliceItAndCollect(Fig,H,W,L,FigOpt)
local H = math.floor(string.gsub(H,"pt","")*2716)
local W = math.floor(string.gsub(W,"pt","")*2716)
local L = math.floor(string.gsub(L,"pt","")*2716)
local vh = 0
local step = L
local h = step
local S = ""
local FigOpt = FigOpt or ""
local NR = 0
local Payload = "{\\ruledhbox{\\clip[voffset=\%dsp,width=\%dsp,height=\%dsp]
{\\externalfigure[\%s] [\%s]}\\11lap{\\t£x\%03d}}}
\\par\\nointerlineskip\\blank[1sp]"
local GoodPoint = document.lscarso.GoodPoints or {}
local j =1
local Vboxes = {}
local prevvh = 0
while vh < H do
NR =NR +1
vh = vh + step
if GoodPoint[j] == NR then
Vboxes [#Vboxes+1] = {from=prevvh,to=vh,mark=NR}
--tex.sprint(tex.ctxcatcodes," (",prevvh,",",vh,") ")

108

prevvh = vh
j=3+
end
end
if math.mod(H,step) == O then H = H +1 end
if math.mod(H,step) > O then
NR = NR +1
vh = vh - step + math.mod(H,step)
Vboxes [#Vboxes+1] = {from=prevvh,to=vh,mark=NR}
end
Payload = "\\ruledvbox{\\hbox{\\clip[voffset=\}dsp,width=\%dsp,height=\%dsp]
{\\externalfigure [\%s] [\%s]}\\1lap{\\t£x\%03d}}}
\\par\\nointerlineskip\\blank[1sp]"
for i,v in ipairs(Vboxes) do
S =string.format(Payload,v.from,W,v.to-v.from,Fig,FigOpt,v.mark)
tex.sprint(tex.ctxcatcodes,S)
end

It’s now rather trivial to modify this macro to build a \vbox to be used with \vsplit.

109

2 Leptonica

Leptonica (http: \\www.leptonica.com) is a pedagogically-oriented open source
site containing software that is useful for image processing and image analysis ap-
plications. It’s not difficult to build a binding for Lua with SWIG. To use Leptonica
we must first convert the pdf in a black and white bitmap with

pdftoppm -mono -r 72 -f 1 -1 1 pari_example.pdf pari_example

(this saves page 1 in pari_example-000001.pbm with a resolution of 72dpi). Then
we scan the bitmap with lept_get_breaks searching for a white row and we store
the y coordinates in GoodPoints. In the end LuaCollect builds the appropriate
vboxes.

\bgroup

\newdimen\Hfig \newdimen\Wfig

\setbox1000=\hbox{\externalfigure [pari_example.pdf] [width=\textwidth]}

\Wfig=\wd1000\relax\Hfig=\dimexpr\ht1000+\dp1000\relax

\executesystemcommand{pdftoppm -mono -r 72 -f 1 -1 1 pari_example.pdf

pari_example}

\ctxlua{document.lscarso.GoodPoints =

document.lscarso.lept_get_breaks("pari_example-000001.pbm",72)}

\ctxlua{document.lscarso.LuaCollect ("pari_example.pdf",
"\the\Hfig","\the\Wfig", [[width=\textwidth]l]1)}

\egroup

Let’s see what happens:

1 83711
= s——>— = 3.019877344877344877344877345

o1

— 146391907924074 3674710929768361083
—28167031592803840774471658R098661706369472

= 5.197278507738630161795216686

41 61358111539698151370° 4944561746732919339914337201927

1~ 749502901196827226266820481792118993292919127408542808267329424000 5:597603105200170167965715973

58630135791001973169852284

= 18472920064106597929865025 — 3.173842337190749408690224140

300
1
4 2 T 3.144914903558851799204586212

*m
1
z il 3.141925875839790151271200075

30000

= 3.141625985812043238153993692

2x=d
300000

—1
z i 3.141595986912015488462612519

71 == 3.141592986923015460712643380 ‘

110

A good breakpoint is marked with an horizontal rule: a black stripe means that good
points are very tight there.

require("leptonica")
function document.lscarso.lua_pixGetPixel(pixs,x,y)
local scratch = 0

local res = '

scratch = leptonica.uti_getref_1_uint32()

if (leptonica.pixGetPixel(pixs,x,y,scratch) == 0) then
res = leptonica.uti_valref_1_uint32(scratch)

else

print("! Error on ",x,y)

res = "'

end

return res
end

function document.lscarso.lept_get_breaks(filename,res)
—-- os.execute([[pdftoppm -mono filename]])
local mainName = filename
local pixs = leptonica.pixRead(mainName)
local lua_pixGetPixel = document.lscarso.lua_pixGetPixel
local GoodPoint = {} -- document.lscarso.GoodPoints or {}
if pixs then
local w = leptonica.pixGetWidth(pixs)

local h = 1leptonica.pixGetHeight (pixs)
local d = leptonica.pixGetDepth(pixs)
local out = ''

local bit

local storey = true

local go

GoodPoint[1] = 0
for y=0,h-1 do
out = "'
storey = true
for x=0,w-1 do
bit = lua_pixGetPixel(pixs,x,y)
if bit == 1 then
storey = false
break
end
end
if storey and (math.floor(0.5+ (y/res) *72.27%2716)
~= GoodPoint [#GoodPoint]) then

111

GoodPoint [#GoodPoint +1] = math.floor(0.5+ (y/res)
*72.27%2716)
end
storey = true
end
GoodPoint [#GoodPoint +1] = math.floor(0.5+ (h/res) *72.27*2716)
else
tex.sprint ("ERROR")
end
return GoodPoint
end

function document.lscarso.LuaCollect(Fig,H,W,FigOpt)
local H = math.floor(string.gsub(H,"pt","")*2716)
local W = math.floor(string.gsub(W,"pt","")*2716)
local vh = 0
local h = step

local § = ""
local FigOpt = FigOpt or ""
local NR = 0

local Payload = ""
local GoodPoint = document.lscarso.GoodPoints or {}
local j =1
local Vboxes = {}
local prevvh = 0
local truey = GoodPoint [#GoodPoint]
local y_ratio = H / truey
for i,v in ipairs(GoodPoint) do

if GoodPoint[i+1] == nil then

break

end

NR = NR +1

Vboxes [#Vboxes+1] = {from=v,to=GoodPoint [i+1] ,mark=NR}

end
Payload = "\\ruledvbox{\\hbox{\\clip[voffset=\}dsp,width=\%dsp,height=\%dsp]
{\\externalfigure[\%s] [\%s]}}}\\par\\nointerlineskip\\blank[1sp]"
for i,v in ipairs(Vboxes) do
S =string.format(Payload,y_ratio*v.from,W,y_ratio*(v.to-v.from),Fig,FigOpt)
tex.sprint (tex.ctxcatcodes,S)
end
end

112

3 MuPDF

We can replace the pdftoppm call by building a Lua binding to MuPDEF, “a light-
weight PDF viewer and toolkit written in portable C” (http:\\www.mupdf . com).
Sumatra (http://en.wikipedia.org/wiki/Sumatra_PDF) is a fast pdfviewer
based on MuPDF.

Despite MuPDF is a well written library and there are several examples that explain
how to use it, it’s not easy to write a converter.

What follow is only a part of an almost literal translation into Lua of the C program
pdfdraw.c and even so the debugging is difficult.

function
local
local
local
local
local

drawpbm (pagenum)

xref = pdfdraw.targetpdf.xref
drawrotate = pdfdraw.drawrotate
drawzoom = pdfdraw.drawzoom
drawbands = pdfdraw.drawbands
drawpattern= pdfdraw.drawpattern

drawloadpage (pagenum)

local
local
local
local
local
name

local
ctm =
ctm =
ctm =
bbox

drawpage = pdfdraw.drawpage
drawcache = pdfdraw.drawcache
bbox,w,h, bh

pix
fd,name
= pdfdraw.outname
ctm = mupdf.fz_identity()
mupdf.fz_concat(ctm, mupdf.fz_translate(0, - drawpage.mediabox.y1))
mupdf.fz_concat(ctm, mupdf.fz_scale(drawzoom, - drawzoom))
mupdf.fz_concat(ctm, mupdf.fz_rotate(drawrotate + drawpage.rotate))

= mupdf .fz_roundrect (mupdf.fz_transformrect(ctm, drawpage.mediabox))

W = bbox.x1 - bbox.x0;

h = bbox.yl - bbox.y0;

bh = h / drawbands;

if NotNil(drawpattern) then

fd = io.open(name,'wb')
if (fd == nil) then
die(fz_throw("ioerror: could not create raster file '%s'", name));
end
fd:write(string.format("P4\n%d %d\n", w, h));
end
pix = mupdf.fz_newpixmap (mupdf.pdf_devicergb, bbox.x0, bbox.y0, w, bh)
mupdf . fz_clearpixmap (pix, OxFF);
for b = 0, drawbands-1 do

local dev, error

dev = mupdf.fz_newdrawdevice(drawcache, pix)

113

error = mupdf.pdf_runcontentstream(dev, ctm, xref, drawpage.resources, drawpage.contents)

if (error>0) then

die(fz_rethrow(error, "cannot draw page %d in PDF file 'Ys'", pagenum, basename))

end
mupdf .fz_freedevice(dev)
if NotNil(drawpattern) then
for y = 0, pix.h -1 do
local column = y * pix.w * 4
local dst = {}
local bit = 0
local r = 0

for x = 0, pix.w-1 do

local v = (1+(mupdf.uti_samples_arr_getitem(pix.samples,(x * 4 + 1) +

column)))*77

v =
v =

v = math.floor(v/256)
local d = 1

if v > 200 then d = 0 end
r =1 + (d*2°(7-bit))
bit = bit +1

if bit == 8 then

bit = 0

dst [#dst+1] = string.char(r)
r=0
end

end
if bit > O then
dst[#dst+1] = string.char(r)
end
fd:write(table.concat (dst))
end
end
pix.y = pix.y + bh;
if (pix.y + pix.h > bbox.yl) then
pix.h = bbox.yl - pix.y;
end
end
mupdf .fz_droppixmap(pix)
if NotNil(drawpattern) then
fd:close()
end
drawfreepage ()
print Q)

end

114

= v + (1+(mupdf.uti_samples_arr_getitem(pix.samples,(x * 4 + 2) + column)))*150

= v + (1+(mupdf.uti_samples_arr_getitem(pix.samples,(x * 4 + 3) + column)))*28

The complete binding is truly more difficult to debug: even if SWIG does an excel-
lent work, it’s necessary to manage the details of implementation of the library.

In this case pdftopbm does already an excellent work, it’s well tested, stable and
ready to use; the call of an external program is not so expensive compared to a plug
in.

4 Conclusion

Lua code is much nearer to plain standard Lua: ConTgXt offers some shortcuts that is
better to learn. For examplemath.floor (string.gsub("10pt", "pt","")*2716)
can be replaced by string.todimen ("10pt") and possibly other things related to
print.

The algorithm that finds a good breakpoint is rather simple: for example the are
some unwanted good breakpoints between a), and the its subscript. This leads to
break an object that should not be broken even if it has some white rows inside. A
practical solution is to consider a line with thickness grater than 1 pixel (butit’s better
to use metric dimensions).

These ideas are also valid for scanned text but then we must take care of noise (and
Leptonica can help a lot here).

Finally, it’s better to consider carefully the opportunity of a binding. As shown with
MuPFD, sometimes the traditional way is still the best way.

About pTalk

pTalk is a short and technical paper that shows some unusual, hopefully useful,
ideas following the schema “figure — code”. The main topic is always typographic
programming in ConTgXt & Lua.

115

Experiences Typesetting OpenType Math with
LualATEpX and XH{IATEX
Zkusenosti se sazbou matematiky ve formatu

OpenType math v Lual& u a XgldTEXu
b P TEX XE[| ULRIK VIETH I

Abstract: When LuaTgX first provided support for OpenType math ty-
pesetting in version 0.40, high-level macro support for math typesetting
was first developed for ConTEXt MkIV, while support for Lual&ATEX was
initially limited to a very low-level or non-existent. In the meantime, this
gap has been closed by recent developments on macro packages such as
luaotfload, fontspec, and unicode-math, so IXTEX users are now provided
with a unified high-level font selection interface for text and math fonts
that can be used equally well with both LualATEX and Xgl4TEX. While
a unified high-level interface greatly improves document interchange and
eases transitions between systems, it does not guarantee that identical
input will always produce identical output on different engines, as there
are significant differences in the underlying implementations of math ty-
pesetting algorithms. While LuaTEX provides a full-featured implemen-
tation of OpenType math, XfIEX has taken a more limited approach
based on a subset of OpenType parameters to provide the functionality
of traditional TEX engines.

Given the possibility of running exactly the same test files on both
engines, it now becomes feasible to study those differences in detail and
to compare the results. Hopefully, this will allow to draw conclusions
how the quality of math typesetting is affected and could be improved by
taking advantage of a more sophisticated, full-featured OpenType math
implementation.

Key words: LualdTEX, XqTEX, OpenType math, math typesetting,
fontspec package, Cambria, Asana, XITS, Neo Euler.

Abstrakt: Jelikoz LuaTEX podporuje Open Type math az od verze 0.40,
byla podpora matematické sazby na vyssi drovni vytvorena nejprve pro
ConTEXt MKIV, zatimco podpora pro LualATEX byla nizkd nebo nebyla
zéddna. Dalsi vyvoj vSak tuto mezeru zacelil — uzivatelé IXTEXu maji nyni
k dispozici jednotné rozhrani pro pripojeni fontu pro bézny text i pro
matematickou sazbu pomoci balicku luaotfload, fontspec a unicode-math;

116 doi: 10.5300/2011-2-4/116

oboji 1ze celkem stejné dobie vyuzit v LualdTEXu i v Xgl&TEXu. T kdyz
toto jednotné rozhrani znacné zjednodusuje vyménu dokumentu i pfenos
mezi ruznymi systémy, nezarucuje, ze tentyz vstup vytvori vzdy tentyz
vystup na ruznych pocitacich kvili vyznamnym odlisnostem v implemen-
taci algoritmi pro matematickou sazbu. Zatimco LuaTEX poskytuje tpl-
nou implementaci vSech vlastnosti OpenType math, XHITEX pfevzal jen
¢ast z nich s ohledem na tradi¢ni implementace TEXu.

Maje moznost prekladat stejné testovaci soubory v obou implemen-
tacich, bylo mozné podrobné zkoumat jejich rozdily a porovnat vyslednou
matematickou sazbu. Doufejme, Ze toto prispéje k zjisténim, co ovliviiuje
kvalitu matematické sazby a jak ji zlepsit implementaci vyhod komplet-
niho forméatu OpenType math.

Klicova slova: Lual&TEX, XgI4TEX, format OpenType math, sazba ma-
tematiky, balicek fontspec, Cambria, Asana, XITS, Neo Euler.

LuaTEX math % !TeX program = lualatex
5 3 \documentclass[fleqn]l{article}
AE — la_E — lV;{ +u ﬂ \usepackage{fontspec,unicode-math}
c? ot? & 09t \setromanfont{Cambria}
\setmathfont{Cambria Math}

1 92B \begin{document}
AB — — — = —pqrotj. \input{luatex-fixes}
c? at? \input{math-test}
\end{document}
XeTEX math % !TeX program = xelatex
5 3 \documentclass[flegn]{article}
AE 1 0°E _ 1 Vi 6] \usepackage{fontspec,unicode-math}
- C_2 L2 = g + ”OE ’ \setromanfont{Cambria}
\setmathfont{Cambria Math}
1 623 \begin{document}
AB— —— =—yu rotj. \input{xetex-fixes}
c? at? 0 \input{math-test}
\end{document}
Can you spot the difference? % !TeX program = pdflatex
\documentclass{article}
N 1 02E 1 Vit aj \usepackage{pdfpages}
T T3 A o Ho=7 \begin{document}
¢t € at \includepdfmerge
3 [nup=2x1,noautoscale=true,delta=-21cm 0]
AB — la B _ ¢ {xelatex-test.pdf,1,lualatex-test.pdf,1}
c? at? = —HgTotj. \end{document}

117

Introduction

In this paper, we will review the state of recent devel-
opments of new TgX engines and corresponding macro
packages to support math typesetting with Unicode and
OpenType math fonts, based on our experiences from
testing the TgX Live 2010 pretest distribution [1].

In the first part, we will summarize the available
choices of TgX engines and macro packages, as well as
the available choices of math fonts, which can be used
for testing OpenType math typesetting.

In the second part, we will report our experiences
testing the various TgX engines, macro packages and
fonts, and we will report our findings which kind of
problems were encountered and how these problems
were resolved or circumvented.

In the third part, we will analyze and compare the re-
sults of running identical documents through different
TeX engines using different implementations of math
typesetting algorithms, and we will try to draw conclu-
sions how the quality of math typesetting is affected
and could be improved.

Reviewing the state of OpenType
math support in TEX Live 2010

In recent years, many developments related to new TgX
engines and corresponding macro packages and fonts
have focused on providing support for Unicode and
OpenType, not just for text typesetting, but also for
math typesetting (which is still important as one of the
traditional strong-holds of TeX).

Unicode and OpenType math technology
While the pre-history of Unicode text support dates
back to the mid-1990s, most activities related to Unicode
math support only became possible during the last few
years, after a suitable font technology was developed as
an extensions to the OpenType font format.

When the efforts to bring math into Unicode were
started in the late 1990s by a consortium of scientific
publishers, the original focus was on identifying math
symbols and getting them accepted into Unicode [2, 3].
Once this was done, the focus shifted to developing a
reference font implementation, the so-called STIX fonts,
to provide the necessary glyph shapes [4].

While the STIX project was spending nearly a decade
waiting for fonts to be designed, the lack of a suitable
font technology for math typesetting was overlooked
for a long time. While traditional TgX font formats sup-
ported math typesetting in their own way, they suffered
from limitations and questionable design decisions [5].

118

On the other hand, mainstream font formats such as
OpenType did not provide any support for the seman-
tics of math typesetting.

Ironically, the lack of a suitable math font technology
was only resolved when Microsoft started to develop
support for MS Office 2007. Given their influence as a
vendor controlling the OpenType font specification [6],
they simply went ahead and created an extension of the
OpenType font format containing a MATH table [7] and
commissioned the design of Cambria Math as a refer-
ence implementation of an OpenType math font [8, 9].
In addition, they also developed a simplified math input
language known as ‘linear math’ [10].

While there are sometimes strong reservations about
accepting a vendor-defined file format, especially an
unreleased one coming from Microsoft, developers of
font tools such as FontForge [11] as well as developers
of TgX engines were willing to accept OpenType math
as a de facto standard, because it filled a need and also
because it turned out to be well-designed.

Upon closer analysis, many concepts of OpenType
math could be seen as obvious extensions or general-
izations of traditional concepts of math typesetting in
TgX [12]. Moreover, most OpenType math font parame-
ters could be identified to have a direct correspondence
to TeX math font parameters [13], which had also been
carefully analyzed in previous studies [14, 15].

OpenType math support in TEX engines
When XeTgX first added OpenType math support in
version 0.997 as of 2007 [16], it kept TgX’s traditional
math typesetting algorithms essentially unchanged and
only used a small subset of OpenType font parameters
to initialize the required TgX font parameters.

When LualgX also added OpenType math support
in version 0.40 as of 2009 [17, 18, 19], it introduced
a number of extensions and generalizations to TgX’s
math typesetting algorithms, aiming to provide a full-
featured implementation of OpenType math.

As of TgX Live 2010, both new TgX engines support-
ing Unicode and OpenType math typesetting have been
added to the mainstream distributions and have become
widely available for using and testing the new features.
However, their acceptance also depends on providing
adequate macro package and font support.

OpenType math support in macro packages
When XeTgX was first added to TgX distributions, it was
easily accessible to LaTgX users with XeLaTEX. A high-
level font selection interface for text fonts was devel-
oped with the fontspec package [20, 21], which became
widely used as a standard package for XeLaTgX.

When XeTgX added math support, a corresponding
high-level font selection interface for math fonts was
also developed with the unicode-math package [22], but
unlike fontspec it wasn’t released until recently.

When LualgX added math support, high-level macro
support was initially developed for ConTgXt MKIV [23],
while macro support for LuaLaTgX (or Plain LuaTgX)
was initially limited to the luaotfload package [24],
which provided only a low-level interface.

As of TgX Live 2010, LaTgX macro package support
for Unicode and OpenType math typesetting has been
much improved, as both the fontspec and unicode-
math packages have undergone a complete rewrite,
adding support for LuaLaTgX (based on luaotfload) to
the code originally developed for XeLaTgX.

As a result, LaTgX users are now provided with a
unified high-level font selection interface for text and
math fonts [25] that can be used equally well with both
XeLalIgX and LuaLaTgX.

Given this interface, selecting a different math font
(such as Cambria Math) can be as easy as this:

\usepackage{fontspec,unicode-math}

\setmainfont[<options>]{Cambria}

\setmathfont[<options>]{Cambria Math}

Using the options of \setmathfont, a number of details
of math typesetting can be easily configured, includ-
ing the behavior of math alphabets (such as upright vs.
italic for normal and bold, uppercase and lowercase,
Latin and Greek), which will make it much easier to
support the specific requirements of math typesetting
in various fields of sciences [26].

OpenType math fonts
Regardless of font technology, developing math fonts
has always been far from easy and choices of math fonts
have always been severely limited. In this respect, the
situation of OpenType fonts today is not much differ-
ent from the situation of PostScript fonts in the 1990s.
While there are countless choices of text fonts, there
are only very few math fonts available, and even fewer
of them are freely available.

As of mid-2010, we have the following choices of
OpenType math fonts at our disposal:

o Cambria Math [8], the original reference math font,
commissioned by Microsoft for Office 2007,

o Asana Math [27], a Palatino-like math font derived
from a repackaging of the mathpazo fonts,

O XITS Math [28], a Times-like math font derived from
a repackaging of the STIX fonts [29],

o Neo Euler [30], an upright math font derived from
Hermann Zapf’s redesign of AMS Euler fonts [31].

Except for Cambria Math, all of these fonts all are
freely available, either from CTAN (if already released)
or from GitHub (if still under development).

As of TgX Live 2010, Asana Math and XITS Math are
both included in the distribution, but Cambria Math
and Neo Euler have to be obtained separately and need
to be installed manually in your texmf-local tree.

Once installed, each of the fonts can be used in the
same way, but the range of symbols and math alphabets
available may differ significantly between fonts.

Experiences testing OpenType
math support in TEX Live 2010

Testing the functionality and quality of OpenType math
typesetting implies testing a complex system, consist-
ing of typesetting engines, macro packages and fonts
(with embedded intelligence), which have to interact
properly to produce the desired results.

Given the inherent complexity, there are a large
number of problems which can occur, and most likely
will occur, so we have to consider the possibilities of
engine problems, macro problems, font problems and
font loading issues.

Problems with TEX engines

Problems with TgX engines can be of several differ-
ent kinds, ranging from fatal ones (such as unexpected
crashes or malfunctions) to more subtle ones (such as
hidden bugs in the math typesetting algorithms produc-
ing incorrect results).

Traditionally, TgX engines have enjoyed a reputa-
tion of being extremely robust and totally free of bugs.
Unfortunately, such expectations no longer hold true
when it comes to new TgX engines, which are under
active development and which don’t have the luxury of
two decades of time to eliminate all possible bugs.

Engine problems of the fatal kind are therefore a very
real possibility, which may even prevent or delay fur-
ther testing until the problems can be resolved.

While testing the TeX Live 2010 pretest distribution,
a number of problems were encountered for XeTgX
on some 64-bit Linux platforms, resulting in crashes
or malfunctions upon loading OpenType math fonts,
which are likely to be caused by incompatibilities with
external library dependencies.

Unfortunately, there was not enough time to debug
these problems before the deadline for the TeX Live 2010
binaries, so the problems remain unresolved for now
and need to be revisited eventually. As a workaround,
it may be possible to use 32-bit binaries on 64-bit Linux
platforms, which do not exhibit such problems.

119

h
yn[; an - qAa] ly[} + myc lzly =0,

h
y“(; aa - qAn) 4y + mOCIv[} =0.

Figure 1: Comparison of the size of delimiters in Asana Math
for LuaTgX 0.60.x and LuaTEX 0.61. Due to a bug in the math
typesetting algorithms, the extensible version of delimiters was
applied too soon. (The example shows the Dirac equation from
relativistic quantum mechanics.)

Engine problems of the more subtle kind were found
in LudlgX, when a bug was discovered for some math
fonts (such as Asana Math), which resulted in applying
the extensible version of delimiters before exhausting
all available sizes of big delimiters. (An example of the
incorrect behavior is illustrated in Figure 1.)

In the meantime, this bug has already been fixed in
LuaTgX 0.61, but again it was too late to include the fix
in TgX Live 2010 which still uses LuaTgX 0.60.x.

Problems with OpenType font metrics
Problems with OpenType fonts can also be of different
kinds, ranging from fatal ones (such as containing mal-
formed data structures causing TgX engines to crash) to
more subtle ones (such as providing incorrect values of
font metric parameters causing TgX engines to produce
incorrect results). In addition, font problems can also
include encoding issues or incorrect glyph shapes.

Font problems of the fatal kind did not occur while
testing OpenType math fonts, but a similar kind of
problem was recently reported for some OpenType text
fonts. The problem was quickly addressed with a fix in
LualgX 0.61 to make the font parsing algorithms more
robust about handling unexpected values.

Font problems of the more subtle kind were found
with incorrect parameter settings in the MATH table of
Cambria Math and Asana Math, which caused LuaTgX
to produce incorrect results.

The problem is related to the OpenType math pa-
rameter DisplayOperatorMinHeight, which is used in
LuaTgX to determine the minimum size of displaystyle
operators. If this parameter is incorrectly set too small
in the font, displaystyle operators will appear in the
same size as textstyle operators. (An example of the
incorrect behavior is illustrated in Figure 2.)

As it turned out, the problem had already been found
earlier when OpenType math support in LualgX was
first tested with ConTgXt, and a workaround had been
applied, but the same problem now reappeared when
LuaTgX was tested with LuaLaIgX.

120

JoeE-df = [Adv, [B-df=0,

jeOE~df=f/ldV, jB»dsz.
F 14 F

Figure 2: Comparison of the size of displaystyle operators in
Cambria Math for LuaTgX with incorrect parameter values of
DisplayOperatorMinHeight and with a correction applied at the
macro level. (The example shows the integral form of the
Maxwell equations from electrodynamics.)

In ConTgXt, a patch for incorrect font parameters
had been applied in the font loading code at the Lua
level in font-pat.lua, but a similar patch was missing
in luaotfload. Until this is fixed, a workaround to the
same effect can be applied at the macro level by setting
\Umathoperatorsize\displaystyle=13.6pt.

In any case, such kinds of patches for specific font
parameter values only present a stop-gap solution until
the actual fonts can be fixed. Whether or not this will
be possible, critically depends on the cooperation of the
font developer or distributor and may range between
very quickly (for some open source projects) and next
to impossible (for some commercial fonts).

Problems with OpenType font shapes

Font problems of yet another kind can occur when the
assignment of glyph shapes to Unicode slots does not
match the expectations, or when an incorrect font style
is used for some glyphs.

One such problem was discovered for the partial
differential symbol in Cambria Math and XITS Math.
Since Unicode math provides a separate slot for a math
italic version (U+1D715), one would expect the default
slot (U+2202) to be reserved for the upright version, yet
the Unicode font tables incorrectly happen to show an
italic version in both slots and no upright version.

Given the confusion in the Unicode font tables, it is
not surprising that several OpenType math fonts have
inherited the same problem. Unfortunately, such font
problems are unlikely to be fixed anytime soon.

g 0 0 0 Cambria Math
d 0 0 0 XITS Math
d Jd 9 0 Asana Math

Figure 3: Comparison of different font shapes of the partial
differential symbol (upright, italic, bold upright, bold italic) as
they appear in Cambria Math, XITS Math, and Asana Math.
Besides the confusion of upright vs. italic there are also some
obvious problems for some of the bold italic versions.

Problems with TEX macro packages

Problems with TgX (or Lua) macro packages are usually
easy to fix. In the course of the TgX Live 2010 pretest,
a number of such issues were found in luaotfload and
unicode-math, which have already been fixed.

Only one issue has remained unresolved, which is
related to the use of the \hbar macro. In a traditional
LaIgX setting, \hbar is a macro which overlays the
italic letter 4 with a bar accent from cmr to produce 5.
By contrast, \hslash is a macro to access a ready-made
glyph from the AMS fonts to produce #.

In a Unicode math setting, only \hslash is assigned
to a slot in an OpenType math font (U+210F), while there
is no equivalent assignment for \hbar, which has some-
how retained its original macro definition and still uses
a glyph from cmr to create the overlay. For lack of a
better solution, it would be better to define \hbar as an
alias for \hslash in unicode-math.

Quite a different effect occurs in ConTgXt, where
\hbar is interpreted as a diacritic text character (h) in
upright shape (U+0127), which may be appropriate in
text typesetting, but not necessarily in a math formula.
As in unicode-math, it would be better to define \hbar
as an alias for \hslash in ConTgXt as well.

Problems caused by interactions between
TEX macro packages and TEX engines

Yet another kind of problem was discovered recently,
which was caused by an interaction problem between
macro packages and TgX engines, specifically between
the unicode-math package and the XeTgX engine.

As it turned out, unicode-math allocated a new math
family for the OpenType math font (such as family 4)
while XeTgX (unlike LuaTgX) somehow still expected
certain math font parameters to be taken from families
2 and 3 (as in traditional TgX engines).

As a result, the preloaded font metric parameters
from cmsy and cmex were incorrectly used to determine
the spacing of math instead of the font parameters from
the OpenType math font.

A fix for this problem is still pending, but most likely
it would involve changing the unicode-math package
to account for different engine-specific behaviors of
LualgX and XeTgX. As a workaround, we can apply
a fix by reassigning the fonts in families 2 and 3 after
loading an OpenType math font in family 4:

\ifxetex\everymath{

\textfont3 = \textfont4

\textfont2 = \textfont4

\scriptfont2 = \scriptfont4

\scriptscriptfont2 = \scriptscriptfont4
3\fi

Font-loading problems

Font-loading problems are usually easy to fix or avoid,
once the cause of the problem has been understood.
Nevertheless, such kinds of problems present a frequent
source of frustration for unwary users, so it may well
be useful to discuss our experiences regarding the font
loading problems we encountered in the course of test-
ing OpenType math with TgX Live 2010.

What is important here is to understand that differ-
ent mechanisms are used to locate OpenType fonts in
different TgX engines and macro packages.

In XeTgX, the fontconfig library is used to locate
OpenType fonts, and this mechanism applies equally
well for system fonts installed in the system font path
as for fonts installed in your TgX Live distribution.

Depending on your installation, it may be necessary
to adjust the fonts.conf config file to include the font
directories in your texmf-dist or texmf-local tree, and
to refresh the font cache with the fc-cache command.
Once a font directory has been added to the search path,
all kinds of font files will be found there, regardless of
where the font files are located.

In LualgX, the kpathsea path searching library is
used to locate fonts, which depends on the assignment
of file extensions (such as *.ttf or *.otf) to different
search paths. As a result of this, cambria. ttc will only
be found in the fonts/truetype tree, while euler.otf
will only be found in the fonts/opentype tree.

In addition to that, ConIgXt and luaotfload on
LuaTgX use yet another font-loading mechanism based
on a file cache implemented in Lua, which circumvents
the kpathsea library completely. System fonts outside
the TEXMF tree will be located using the fonts.conf
config file to look up the font directories, but without
using the the fontconfig library. Once a font directory
has been added to the file cache, all kinds of font files
will be found there, regardless of where the fonts are
located, similar to the fontconfig library.

Comparing and testing the quality
of OpenType math typesetting

To proceed with a study the quality of OpenType math
font support as of TgX Live 2010, we have the follow-
ing choices of typesetting engines and macro packages
at our disposal (disregarding Plain LuaTgX and XeTgX
which only provide low-level support):

o LuaTgX with ConTgXt MKIV

o LuaTgX with LuaLaTgX
o XeTgX with XeLaTgX

121

While both LuaLalgX and ConTgXt share the same
TeX engine and the same implementation of math type-
setting algorithms, they differ in their high-level user
interface and also in the intermediate levels of font
loading code (such as luaotfload).

While both LuaLalgX and XeLaTgX share the same
user interface of unicode-math and fontspec, they are
based on different TeX engines, LualgX and XeTgX,
which differ significantly in their implementations of
math typesetting algorithms.

Comparing the results of LuaLalgX and ConTgXt
should not be expected to expose any differences in the
output from identical math typesetting algorithms, but
if there are any differences, a closer analysis should help
to detect bugs or inconsistencies in the different macro
packages and/or in the font loading code.

Comparing the results of LuaLaTgX and XeLaTgX,
however, should indeed be expected to expose some
differences in the underlying typesetting algorithms.
Hopefully, an analysis of these differences should allow
to draw conclusions how the quality of math is affected
and could be improved by taking advantage of a full-
featured implementation of OpenType math.

Testing a sampling of OpenType math
When we began testing OpenType math support with
TeX Live 2010, we didn’t have time to do systematic and
comprehensive testing, which would have been a very
time-consuming and tedious task.

Instead, we wanted to get some quick impressions
how well OpenType math support worked and if it
would be ready for practical use, so we concentrated
on testing just a sampling of mathematical notations.
Given our personal background in typesetting mathe-
matical physics, we started by creating a sample test
document containing a selection of famous equations
from various fields of physics, sampling various kinds
of mathematical notations.

In addition to testing the available choices of TEX
engines and macro packages, we also wanted to test a
sampling of the available OpenType math fonts, so we
proceeded to typeset identical copies of our test files
with different TgX engines and with different choices
of math fonts for each of Cambria Math, XITS Math,
Asana Math, and Neo Euler.

Some examples of typesetting such test pages with
different fonts are shown in Figures 8-11, except that
each font sample was usually typeset at least twice with
LuaLaTEX and XeLaIgX.

In some cases, we also tested an additional version
with ConTgXt MKIV, but unfortunately we had to use a
modified version of our test files in such cases.

122

%

0z2°

atp o%
Ap(r) = a—x‘f + £+

Figure 4: Comparison of math typesetting from XeLaTgX (red)
and LualaTgX (blue) using Cambria Math. (The example shows
the definition of the Laplace operator in vector analysis.)

1 8nG
R#Y — ZRghY + AghV = ——— ¥ .
29 +4g c2

Figure 5: Comparison of math typesetting from XeLaTEX (red)
and LualaTgX (blue) using Cambria Math. (The example shows
the Einstein field equation from general relativity.)

Analyzing large-scale effects

Comparing the different versions for the same font
typeset with different engines or macro packages may
reveal significant differences at various scales.

If there are any unexpected large-scale effects, such
as using different sizes of delimiters or operators, it is
usually easy to spot them simply by visual inspection.
In most cases, such obvious differences will turn out to
be unintentional and tend to indicate problems or bugs,
such as those discussed earlier in this paper.

Analyzing small-scale effects

Once we have applied all the necessary workarounds
and bug fixes to eliminate the unexpected large-scale
effects, only small-scale effects should remain, affecting
tiny micro-typographic details, which may be hard to
see without closer inspection.

In order to the study the small-scale effects in more
detail, we created another set of more sophisticated test
files using PDF overlays between different versions of
the same document using different colors.

These overlays were generated with PDFLaIEX using
the pdfpages package as follows:

\documentclass[a4paper]{article}

\usepackage{pdfpages}

\begin{document}

\includepdfmerge[nup=2x1,noautoscale=true,
delta=-21cm @] % width of A4 paper
{xelatex-test.pdf,1,lualatex-test.pdf,1,

xelatex-test.pdf,n,lualatex-test.pdf,n}
\end{document}
This setup will put each page of the LuaLalgX test file
on top of the corresponding page of the XeLaTgX test
file. For improved visibility, colors should be chosen in
such a way that the darker colors (such as black or blue)
will appear on top of the brighter colors (such as red).
In our example illustrations we have usually used red
for XeLaTgX overlaid by blue for LuaLaTgX.

2

0z% ~

a2¢

dx2

20

+
ay?

Ap(r) =

Figure 6: Comparison of math typesetting from XeLaTgX (red)
and LualaTgX (blue) after applying a workaround for XeLaTEX
to circumvent inconsistent placement of superscripts.

1 8nG
RW — ERg‘"’ + Ag = = M*

Figure 7: Comparison of math typesetting from XeLaTgX (red)
and LualaTgX (blue) after applying a workaround for XeLaTgX
to circumvent inconsistent placement of superscripts.

Analyzing the results of overlays

Once we have generated overlays of the results from
typesetting the same equations with different engines,
it is easy to detect if any differences occur. However,
it is far from easy to understand how these differences
come about and what their implications might be.

In our first series of tests, we originally noticed some
very significant differences in vertical spacing around
fraction bars. Once we detected the problem of XeTgX
incorrectly using the preloaded set of font parameters
and applied a workaround, most differences in vertical
spacing disappeared and only few remained.

In our second series of tests, only relatively few
differences remained. Moreover, the remaining effects
only appeared for some fonts and not for others. While
there were hardly any effects on vertical spacing for
XITS Math, there were some notable differences in the
placement of scripts for Asana Math or Cambria Math,
as illustrated in Figures 4-5.

Upon closer inspection, we eventually found that the
differences only affected some letters within an equa-
tion, but not all of them. There were no differences
on letters without ascenders or descenders (as in x
or x?), while there were differences for superscripts on
letters with ascenders (as in %) and also for subscripts
on letters with descenders (as in). The cause of this
problem isn’t clear yet, but it most likely indicates an
unresolved engine problem in XeTEX.

In our third series of tests, the remaining effects on
vertical spacing could be eliminated completely after
we applied a workaround for the placement of scripts,
and only some effects on horizontal spacing remained,
as illustrated in Figures 6-7.

The remaining effects on horizontal spacing are most
likely related to different interpretations of OpenType
glyph metrics in different TgX engines (such as italic
corrections and math kerning [18]), which certainly
will have an effect on the quality of math typesetting,
but only on a very small scale.

Summary and Conclusions

In this paper, we have reported our experiences, find-
ings and observations from testing OpenType math
support in TgX Live 2010 with different TgX engines,
macro packages and fonts.

When we set out, we expected to gain some insights
how the quality of math typesetting was affected by the
use of additional font parameters in a more sophisti-
cated implementation of OpenType math support.

In the end, however, it turned out that most of the
differences were actually caused by unresolved bugs in
both macro packages and TgX engines, while the use of
additional math font parameters appears to be largely
irrelevant for our selection of test cases.

It was only by direct comparison with LualgX that
some long-standing bugs or inconsistencies in XeTgX
engine and the unicode-math package could be found.
Without a suitable baseline reference, it is obviously
hard to tell if the spacing of math is exactly right or
just slightly wrong, so it is not surprising that minor
inconsistencies went unnoticed for a long time.

Once we applied workarounds or fixes for the prob-
lems we discovered, the remaining differences between
different TgX engines turned out to be much smaller
than expected and only affected the horizontal spacing,
but no longer the vertical spacing.

Given the scale of the remaining effects, our studies
regarding the quality of math typesetting in different
TeX engines remain inconclusive for now. Both engines
can produce very similar results, but XeTgX will do so
only after applying a number of fixes and workarounds
to arrive at what LuaTgX will do by default.

Acknowledgements

The author would like to thank the developers involved
in math-related TgX engines, macro packages and fonts
for their assistance and feedback during the testing of
OpenType math font support in TgX Live 2010.

In particular, Will Robertson (unicode-math), Khaled
Hosny (luaotfload), Taco Hoekwater (LualgX), Hans
Hagen (ConTgXt), Jonathan Kew (XeTgX), Karl Berry
and Peter Breitenlohner (TgX Live 64-bit Linux binaries)
contributed to our testing and problem solving efforts
in one way or another.

Fortunately, we were able to discover and eliminate
a number of bugs before the deadline of TgX Live 2010
pretest. Unfortunately, not all known issues could be
resolved in time, so some problems remain to be fixed
in future releases. While such fixes for macro packages
and fonts can be issued through the TgX Live update
mechanism at any time, fixes for TeX engines may be
delayed until next year’s TgX Live release.

123

Cambria Math Example
Vector calculus:

a a a
Vo(r) = %ex + %ey + 6_er'

62¢ ?¢p 9%*¢p
AP(T) = — > + W + ﬁ .

Maxwell equations (differential form):
divegE =1, divB=0,

B . 0gE

a
tE = —— t— = —_
ro ar’ ro o Jj+ T

Maxwell equations (integral form):

fsoE~df=J/1dV, fB»df=0,
F v F
fE dl = dJ’B df
c dt Jp '

B) asOE
ff—~dl=J’] -df.
¢ Ho F

Electromagnetic wave equations:

AE 1 0%E 1 aj
29tz g Hoje-
1 92 .

AB — = atz Ho rotj

,ll—vz/cz'

Einstein field equation (general relativity):
1 8mG
R¥Y — —Rg*¥ + Agh’ = ———MHV.
219 g p
Schrodinger equation (quantum mechanics):

1ha—lp—H¢—

1 (ko AZ
3t _m<T -q)¢+Q¢¢-

Dirac equation (relativistic quantum mechanics):

(29, - qa
14 {Ca qhq

Figure 8: Sampling of equations typeset with LualLaTEX using
Cambria and Cambria Math.

)¢+moc¢=0.

124

Asana Math Example
Vector calculus:

9 0 99
Vo(r) = —ex + @ey + gez,
L) 32¢)
A
() = w2 T Y T
Maxwell equations (differential form):
divegE=4, divB=0,
oB B . d¢E
TotE=-—, rot— =j+ .
ot Ho ot

Maxwell equations (integral form):

fFeOBdf:vadv, fFﬂdf:o,
fCE»cu:—%fFBdf,
AR IGE ¥R

Electromagnetic wave equations:

1%E 1 o
2o g Ko -
1 9°B .

“2E —Lproty.

Energy-mass equation (special relativity):

2

_ myC
VI—?2’
Einstein field equation (general relativity):
1 8nG
REV — —Rgt 4+ AghV = ———— MMV
PR 8 2

Schrédinger equation (quantum mechanics):

qA) y+apy.
Dirac equation (relativistic quantum mechanics):

y"(ha tht)l/}+mOClr[} 0.

Figure 9: Sampling of equations typeset with LualLaTEX using
TEX Gyre Pagella and Asana Math.

XITS Math Example
Vector calculus:

¢ ¢ ¢
V(r) aex+a—yey+a— Z
Py PP P
AP(r) = — + — + — .
¢ ox2 0y? 0z?

Maxwell equations (differential form):

divegE=4, divB=0,
deyE
rotE:—E, rot£=j+ 0=
ot U ot

Maxwell equations (integral form):

/50E~df=//1dv, /B-df:(),
F |4 F
i/
E-dl=-% [B.df,
j{c dt J

deoE
£~dl=/<j+ 0 >~df.
c Ho F or

Electromagnetic wave equations:

2 0j
1 0°E IVA J

T e TR
1 *B .
—C—Z? = —pgrotj.

Energy-mass equation (special relativity):

myc?
V1 —v2/c?

Einstein field equation (general relativity):

E =

872G

R = Lo g pgn = -Gy

2
Schrodinger equation (quantum mechanics):

! < V- qA>w+q¢w.

Dirac equation (relativistic quantum mechanics):

n
Ya(Taa—qAa>u/+m0cu/ =0.

Figure 10: Sampling of equations typeset with LuaLaTEX using
XITS and XITS Math.

Neo Euler Example
Vector calculus:

9 0 0
V¢(r):£ex+£ y+a—fez,

2¢ 029 0324
AN =Tzt oz Yoz

Maxwell equations (differential form):

diveoE=A, divB =0,
oB B d¢eoE
tE=—— t—=j .
TO0 a0 ™ o j+ ot

Maxwell equations (integral form):

J soE~df:J Adv, J B-df=0,
F v F

d
3*5 E-dl= *EJ B df,

B . 0¢oE
7.d1:J(+)’df.
%C Ko F) ot

Electromagnetic wave equations:

1 aZE 1 0j
———5 =—VA
c2 0t2 g THoGt ot’
1 0?B .
“ 2z = —uo rotj.

Energy-mass equation (special relativity):

moc?

V1=vZjcz’
Einstein field equation (general relativity):

8nG
—IEMEY.

E=

RMY — %ng FAGHY =

Schrodinger equation (quantum mechanics):

h 2
mafﬂq}ff(vaqA) P+ qodp.

Dirac equation (relativistic quantum mechanics):

h
% <Taoc — qA(x> P +mecp =0.

Figure 11: Sampling of equations typeset with LuaLaTEX using
TEX Gyre Pagella and Neo Euler.

125

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

126

TgX Users Group: Testing TX Live before release.
http://tug.org/texlive/pretest

Barbara Beeton, Asmus Freytag, Murray Sargent III:
Unicode Support for Mathematics.

Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

Barbara Beeton: Unicode and math, a combination
whose time has come. TUGboat, 21(3):174-185, 2000.
Proceedings of TUG 2000, Oxford, UK.
http://www.tug.org/TUGboat/th21-3/tb68beet. pdf
Barbara Beeton: The STIX Project — From Unicode
to fonts. TUGboat, 28(3):299-304, 2007.

Proceedings of TUG 2007, San Diego, CA, USA.
http://www.tug.org/TUGboat/th28-3/tb90beet . pdf
Ulrik Vieth: Math Typesetting in TeX: The Good,
The Bad, The Ugly. MAPS, 26:207-216, 2001.
Proceedings of EuroTgX 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

OpenType Specification, Version 1.6.
http://www.microsoft.com/typography/otspec/
Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.aspx
John Hudson, Ross Mills: Mathematical Typesetting:
Mathematical and scientific typesetting solutions.
Promotional Booklet, Microsoft, 2006.

Daniel Rhatigan: Three typefaces for mathematics.
Dissertation for the MA in typeface design, 2007.
http://www. typeculture.com/academic_resource/
articles_essays/pdfs/tc_article_47.pdf

Murray Sargent III: Unicode Nearly Plain Text
Encodings of Mathematics.

Unicode Technical Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/

George Williams: FontForge: Math typesetting
information.
http://fontforge.sourceforge.net/math.html
Ulrik Vieth: Do we need a ‘Cork” math font
encoding? TUGboat, 29(3):426-434, 2008.
Proceedings of TUG 2008, Cork, Ireland.
http://www.tug.org/TUGboat/tbh29-3/tb93vieth.pdf
Ulrik Vieth: OpenType Math Illuminated. Reprinted
in TUGboat, 30(1):22-31, 2009.

Proceedings of BachoTEX 2009, Bachotek, Poland.
http://www.tug.org/TUGboat/tbh30-1/tb94vieth.pdf
Bogustaw Jackowski: Appendix G [lluminated.
TUGboat, 27(1):83-90, 2006.

Proceedings of EuroTEX 2006, Debrecen, Hungary.
http://www.tug.org/TUGboat/th27-1/
tb86jackowski. pdf

Ulrik Vieth: Understanding the eesthetics of math
typesetting. Biuletyn GUST, 5-12, 2008.

Proceedings of BachoTiX 2008, Bachotek, Poland.
http://www.gust.org.pl/projects/e-foundry/
math-support/vieth2008.pdf

Jonathan: Kew: XeTgX Live. TUGboat, 29(1):151-156,
2008.

Proceedings of BachoTEX 2007, Bachotek, Poland.
http://www.tug.org/TUGboat/tb29-1/tb9Tkew. pdf

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Taco Hoekwater: LualgX Reference Manual.
http://www.luatex.org/svn/trunk/manual/
luatexref-t.pdf

Taco Hoekwater: Math in LualEX 0.40.

MAPS, 38:22-31, 2009.
http://www.ntg.nl/maps/38/04.pdf

Hans Hagen: Unicode Math in ConTgXt.

MAPS, 38:32-46, 2009.
http://www.ntg.nl/maps/38/05. pdf

Will Robertson: Advanced font features with XeTgX:
The fontspec package. TUGboat, 26(3):215-223, 2005.
http://www. tug.org/TUGboat/tb26-3/
tb84robertson. pdf

Will Robertson: The fontspec macro package.
http://www.ctan.org/pkg/fontspec
http://github.com/wspr/fontspec

Will Robertson: The unicode-math macro package.
http://www.ctan.org/pkg/unicode-math
http://github.com/wspr/unicode-math

Aditya Mahajan: Integrating Unicode and OpenType
math in ConTgXt. TUGboat, 30(2):243—246, 2009.
Proceedings of TUG 2009, Notre Dame, IN, USA.
https://www.tug.org/members/TUGboat/tb30-2/
tb95mahajan-cmath.pdf

Khaled Hosny et al.: The luaotfload macro package.
http://www.ctan.org/pkg/luaotfload
http://github.com/khaledhosny/luaotfload

Will Robertson: Unicode mathematics in LaTEX:
advantages and challenges.

To appear in TUGboat, 31(2):???-27?, 2010.
Proceedings of TUG 2010, San Francisco, CA, USA.
https://www.tug.org/members/TUGboat/th31-2/
tb98robertson. pdf

Ulrik Vieth: Experiences typesetting mathematical
physics. MAPS, 39:166—178, 2009.

Proceedings of EuroTgX 2009, Delft, Netherlands.
https://www.tug.org/members/TUGboat/tbh30-3/
tb96vieth. pdf

Apostolos Syropoulos: Asana Math Font.
http://www.ctan.org/pkg/asana-math

Khaled Hosny: XITS Fonts.
http://www.ctan.org/pkg/xits
http://github.com/khaledhosny/xits-math

STIX Consortium: STIX Fonts.
http://www.stixfonts.org/
http://www.ctan.org/pkg/stix

Khaled Hosny: Neo Euler Font.
http://github.com/khaledhosny/euler-otf

Hans Hagen, Taco Hoekwater, Volker RW Schaa:
Reshaping Euler: A collaboration with Hermann
Zapf. TUGboat, 29(3):283-287, 2008.
http://www.tug.org/TUGboat/th29-2/
th92hagen-euler.pdf

Ulrik Vieth

Vaihinger StraBe 69

70567 Stuttgart

Germany

ulrik dot vieth (at) arcor dot de

LuaTEX 0.60

‘lTAco HOEKWATER, HARTMUT HENKELI

Abstract: TEXLive 2010 will contain LuaTEX 0.60. This article gives an
overview of the changes between this version and the version on last year’s
TgXLive. Highlights of this release: cweb code base, dynamic loading of
lua modules, various font subsystem improvements including support for
Apple .dfont, font collection files, braced input file names, extended pdf
Lua table, and access to the line breaking algorithm from Lua code.

Key words: Lua, LuaTgX, verze 0.60

Abstrakt: Clanek predstavuje zmény a novinky ve verzi LuaTgXu 0.60.

Klicova slova: programovaci jazyk Lua, LuaTgX, verze 0.60

References

[1] LuaTEX Available at URL: http://www.luatex.org/
[2] The Programming Language Lua. Home page. Available at URL:
http://www.lua.org/

taco (at) elvenkind (dot) com
Elvenkind BV, Spuiboulevard 269, 3311 GP Dordrecht, The Netherlands

doi: 10.5300/2011-2-4/127 127

128

General changes

Some of the changes can be organised into sections, but not all. So first, here are the
changes that are more or less standalone.

o

Many of the source files have been converted to cweb. Early versions of LuaTgX
were based on Pascal web, but by 0.40 all code has been hand-converted to C. The
literate programming comments were kept, and the relevant sources have now
been converted back to cweb, reinstating the literate documentation.

This change does not make LuaTgX a literate program in the traditional sense
because the typical C source code layout with pairs of header & implementation
files has been kept and no code reshuffling takes place. But it does mean that it is
now much easier to keep the source documentation up to date, and it is possible
to create nicely typeset program listings with indices.

There are now source repository revision numbers in the banner again, which is
a useful thing to have while tracking down bugs. For example, the LuaTgX binary
being used to write this article starts up with:

This is LuaTeX, Version beta-0.60.1-2010042817 (rev 3659)

The horizontal nodes that are added during line breaking now inherit the attrib-
utes from the nodes inside the created line.

Previously, these nodes (\leftskip and \rightskip in particular) inherited the
attributes in effect at the end of the (partial) paragraph because that is where line
breaking takes place.

All Lua errors now report file and line numbers to aid in debugging, even if the
error happens inside a callback.

LuaTgX can now use the embedded kpathsea library to find Lua require() files,
and will do so by default if the kpathsea library is enabled by the format (as is the
case in plain LuaTgX and the various Lualt®TEX formats).

The print precision for small numbers in Lua code (the return value of tostring())
has been improved.

Of course there were lots of code cleanups and improvements to the reference
manual.

Embedded libraries and other third-party inclusions

The following are changes to third-party code that for the most part should not need
much explanation.

O o oo

MetaPost is now at version 1.211.

Libpng is now at version 1.2.40.

New SyncTgX code is imported from TgX Live.

The Lua source file from the luamds library (which provides the md5 . hexsuma func-
tion) is now embedded in the executable. In older versions of LuaTgX, this file was
missing completely.

The Lua co-routine patch (coco) is now disabled on powerpc-linux because it
caused crashes on that platform due to a bad upstream implementation.

Dynamic loading of lua modules
LuaTgX now has support for dynamic loading of external compiled Lua libraries.

As with other require() files, LuaTgX can and will use kpathsea if the format

allows it to do so. For this purpose, kpathsea has been extended with a new file type:
clua. The associated texmf.cnf variable is by default defined like this:

CLUAINPUTS=. : $SELFAUTOLOC/1ib/{$progname, $engine, }/lua//

which means that if your LuaTgX binary lives in

/opt/tex/texmf-1linux-64/bin/

then your compiled Lua modules should go into the local directory, or in a tree below
/opt/tex/texmf-1linux-64/bin/1ib/lua

Be warned that not all available Lua modules will work. LuaTgX is a command line
program, and on some platforms that makes it nearly impossible to use GUI-based
extensions.

Font related

Lots of small changes have taken place in the font processing.
o The backend message
cannot open Type 1 font file for reading

now reports the name of the Type1 font file it was looking for.

o Itis no longer possible for fonts from included pdf files to be replaced by / merged
with the document fonts of the enveloping pdf.

o Support for Type3 .pgc files has been removed. This is just for the .pgc format
invented by Han Thé Thanh, bitmapped pk files still work.

o For TrueType font collections (. ttc files), the used subfont name and its index id
are printed to the terminal, and if the backend cannot find the font in the collec-
tion, the run is aborted.

o It is now possible to use Apple .dfont font collection files.

Unfortunately,in Snow Leopard (a.k.a. MacOSX 10.6) Apple switched to a .ttc
format that is not quite compatible with the Microsoft version of . ttc. As a result,
the system fonts from Snow Leopard cannot be used in LuaTgX 0.60.

o Theloading speed of large fonts via the fontloader library, and the inclusion speed
for sub-setting in the backend have both been improved.

o There are two new MathConstants entries added. Suppose the Lua math font load-
ing code produces a Lua table named f. In that table, you can set

f.MathConstants.FractionDelimiterSize
f.Mathconstants.FractionDelimiterDisplayStyleSize

These new fields allows proper setting of the size parameters for LuaTgX's
...withdelims math primitives, for which there is no ready replacement in the
OpenType MATH table.

o Artificially slanted or extended fonts now work via the pdf text matrix so that
this now also works for non-Typel fonts. In other words: the Lua f.slant and
f.extend font keys are now obeyed in all cases.

o There is another new allowed key: f.psname. When set, this value should be the
original PostScript font name of the font. In the pdf generation backend, fonts
inside .dfont and . ttc collections are fetched from the archive using this field, so
in those cases the key is required.

129

130

o

o

A related change is made to the font name discovery used by the backend for
storage into the pdf file structure: now it tries f.psname first, as that is much less
likely to contain spaces than f. fontname (which is the field that 0.40 used). If there
is no f.psname, it falls back to the old behaviour.

Finally, Lua-loaded fonts now support a f.nomath key to speed up loading the Lua
table in the normal case of fonts that do not provide OpenType MATH data.

‘TEX’-side extensions and changes

LuaTgX is not actually TgX even though it uses an input language that is very similar,
hence the quotes in this section's title. Some of the following items are new LuaTgX
extensions, others are adjustments to pre-existing pdfTgX or Aleph functionality.

o

The primitives \input and \openin now accept braced file names, removing the
need for double quote escapes in case of files with spaces in their name.
The \endlinechar can now be set to any value between 0 and 127.
The new primitives \aligntab and \alignmark are aliases for the use single char-
acters with the category codes of & and # in alignments.
\latelua is now allowed inside leaders. To be used with care, because the Lua
code will be executed once for each generated leader item.
The new primitive \gleaders provides ‘globally aligned’ leaders. These leaders are
aligned on one side of the main output box instead of to the side of the immediately
enclosing box.
From now on LuaTgX handles only 4 direction specifiers:

TLT (latin),

TRT (arabic),

RTT (cjk), and

LTL (mongolian).
Other direction specifiers generate an error.
The \pdfcompresslevel is now effectively fixed as soon as any output to the pdf
file has occurred.
\pdfobj has gained an extra optional keyword: uncompressed. This forces the ob-
ject to be written to the pdf in plain text, which is needed for certain objects con-
taining metadata.
Two new token lists are provided: \pdfxformresources and \pdfxformattr, as an
alternative to \pdfxform keywords.
The new syntax

\pdfrefxform [width <dimen>] [height <dimen>] [depth <dimen>] <formref>

scales a single form object; using similar principle as with \pdfximage: depth alone
doesn't scale, it shifts vertically.
Similarly,

\pdfrefximage [width <dimen>] [height <dimen>] [depth <dimen>] <imageref>

overrules settings from \pdfximage for this image only.

The following obsolete pdfTgX primitives have been removed:
\pdfoptionalwaysusepdfpagebox
\pdfoptionpdfinclusionerrorlevel
\pdfforcepagebox
\pdfmovechars

These were already deprecated in pdfTgX itself.

Lua table extensions

In most of the Lua tables that LuaTEX provides, only small changes have taken place,
so they do not deserve their own subsections.

o There is a new callback: process_output_buffer, for post-processing of \write
text to a file.

o The callbacks hpack_filter, vpack_filter and pre_output_filter pass on an ex-
tra string argument for the current direction.

o fontloader.open() previously cleared some of the font name strings during load
that it should not do.

o The new function font.id(”tenrm”) returns the internal id number for that font.
It takes a bare control sequence name as argument.

o The os.name variable now knows about cygwin and kfreebsd.

o 1fs.readlink(”file") returns the content of a symbolic link (Unix only). This
extension is meant for use in texlua scripts.

o 1fs.shortname(”file") returns the short (FAT) name of a file (Windows only).
This extension is meant for use in texlua scripts.

o kpse.version() returns the kpathsea version string.

o kpse.lookup({...}) offers a search interface similar to the kpsewhich program,
an example call looks like this:

kpse.set_program_name('luatex')
print(kpse.lookup ('plain.tex’,
{ ["format"] = "tex",
["all"] = true,
["must-exist”"] = true }))

The ‘node’ table
In the verbatim code below, n stands for a userdata node object.

o node.vpack(n) packs a list into a vlist node, like \vbox.
o node.protrusion_skippable(n) returns true if this node can be skipped for the
purpose of protrusion discovery.

This is useful if you want to (re)calculate protrusion in pure Lua.

o node.dimensions(n) returns the natural width, height and depth of a (horizontal)
node list.

o node.tail(n) returns the tail node of a node list.

o Each glyph node now has three new virtual read-only fields: width, height, and
depth. The values are the number of scaled points.

o glue_spec nodes now have an extra boolean read-only field: writable.

Some glue specifications can be altered directly, but certain key glue specifi-
cations are shared among many nodes. Altering the values of those is prohibited
because it would have unpredictable side-effects. For those cases, a copy must be
made and assigned to the parent node.

o hlist nodes now have a subtype to distinguish between hlists generated by the
paragraph breaking, explicit \hbox commands, and other sources.

o node.copy_list(n) now allows a second argument. This argument can be used to
copy only part of a node list.

o node.hpack(n) now accepts cal_expand_ratio and subst_ex_font modifiers.

131

132

o

This feature helps the implementation of font expansion in a pure Lua para-
graph breaking code.
node. hpack(n) and node.vpack(n) now also return the ‘badness’ of the created
box, and accept an optional direction argument.

The ‘pdf’ table

The new functions pdf.mapfile(”...") and pdf.mapline(”...") are aliases for
the corresponding pdfTEX primitives.
pdf.registerannot() reserves a pdf object number and returns it.
The functions pdf.obj(...), pdf.immediateobj(...), and pdf.reserveobj(...)
are similar to the corresponding pdfTgX primitives. Full syntax details can be read
in the LuaTgX reference manual.
New read-write string keys:
pdf.catalog string goes into the Catalog dictionary.
pdf. info string goes into the Info dictionary.
pdf.names string goes into the Names dictionary. referenced by the Catalog
object.
pdf.trailer string goes into the Trailer dictionary.
pdf.pageattributes string goes into the Page dictionary.
pdf . pageresources string goes into the Resources dictionary referenced by
the Page object.
pdf.pagesattributes string goes into the Pages dictionary.

The ‘tex’ table
Finally, there are some extensions to the tex table that are worth mentioning.

0O o oo

tex.badness(f,s) interfaces to the ‘badness’ internal function.

Accidentally, this disables access to the \badness internal parameter, this will
be corrected in a future LuaTgX version.
tex.sp("1in") converts Lua-style string units to scaled points.
tex.tprint({...},{...2) is like a sequence of tex.sprint(...) calls.
tex.shipout(n) ships out a constructed box.
tex.nest[] and tex.nest.ptr together allow read-write access to the semantic
nest (mode nesting).

For example, this prints the equivalent of \prevdepth at the current mode nest-
ing level.

print (tex.nest[tex.nest.ptr].prevdepth)

tex.nest.ptr is the current level, and lower numbers are enclosing modes.

Each of the items in the tex.nest array represents a mode nesting level and has
a set of virtual keys that be accessed both for reading and writing, but you cannot
change the actual tex.nest array itself. The possible keys are listed in the LuaTgX
reference manual.
tex.linebreak(n, {...}) supports running the paragraph breaker from pure Lua.
The second argument specifies a (potentially large) table of line breaking para-
meters: the parameters that are not passed explicitly are taken from the current
typesetter state.

The exact keys in the table are documented in the reference manual, but here
is a simple yet complete example of how to run line breaking on the content of
\box@:

\setbox@=\hbox to \hsize{\input knuth }
\startluacode
local n = node.copy_list(tex.box[@].list)
local t = node.tail(n)
local final = node.new(node.id('glue'))
final.spec = node.new(node.id('glue_spec'))
final.spec.stretch_order = 2
final.spec.stretch = 1
node.insert_after(n,t, final)
local m = tex.linebreak(n,

{ hangafter = 2, hangindent = tex.sp("2em")})
local g = node.vpack(m)
node.write(q)
\stopluacode

The result is this:

Thus, I came to the conclusion that the designer of a new system must not only

be the implementer and first large—scale user; the designer should also write the
first user manual. The separation of any of these four components would
have hurt TgX significantly. If T had not participated fully in all these ac-
tivities, literally hundreds of improvements would never have been made,
because I would never have thought of them or perceived why they were im-
portant. But a system cannot be successful if it is too strongly influenced by
a single person. Once the initial design is complete and fairly robust, the real
test begins as people with many different viewpoints undertake their own
experiments.

Summary

All in all, there are not too many incompatible changes compared to LuaTEX 0.40,
and the LuaTgX project is progressing nicely.

LuaTgX beta 0.70 will be released in the autumn of 2010. Our current plans for
that release are: access to the actual pdf structures of included pdf images; a partial
redesign of the mixed direction model; even more access to the LuaTgX internals
from Lua; and probably some more ...

133

LuaTgX 0.63 Short Reference
LuaTgX 0.63 Stru¢ny pruvodce

‘l TAacO HOEKWATERI

Abstract: This manual gives a brief description of functions collected
mainly in the callback, font, font loader, image, kpathsea, language, lua,
metapost, node, pdf, status, typesetting, 10, texconfig and token tables
provided by LuaTgX 0.63.

Key words: Lua, LuaTEX, revision 0, version 63, tables
Abstrakt: V manualu je uveden stru¢ny popis funkei, zahrnutych zejména

ve zpétnych voldnich, v fadé tabulek, které poskytuje LuaTEX 0.63.
Klicova slova: programovaci jazyk Lua, LuaTEX, verze 0.63, tabulky

taco (at) elvenkind (dot) com
FElvenkind BV, Spuiboulevard 269, 3311 GP Dordrecht, The Netherlands

134 doi: 10.5300/2011-2-4/134

Tokenisation changes callbacks

string = process_input_buffer(string)
Modify the encoding of the input buffer.

string = process_output_buffer(string) Modify the encoding of the
output buffer.

table = token_filter() ~ Override the tokenization process. Return value
is a token or an array of tokens

Node list callbacks

buildpage_filter(string) ~ Process objects as they are added to the main
vertical list. The string argument gives some context.

buildpage_filter context information:

value explanation

alignment a (partial) alignment is being added

after_output an output routine has just finished

box a typeset box is being added

new_graf the beginning of a new paragraph
vmode_par \par was found in vertical mode
hmode_par \par was found in horizontal mode
insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts
after_display adisplay is finished
end LuaTgX is terminating (it's all over)

node = pre_linebreak_filter(node, string)
Alter a node list before linebreaking takes place. The string argument
gives some context.

pre_linebreak_filter context information:

value explanation

<empty> main vertical list

hbox \hbox in horizontal mode
adjusted_hbox \hbox in vertical mode
vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert
veenter \vcenter

local_box \localleftbox or \localrightbox
split_off top of a \vsplit
split_keep remainder of a \vsplit
align_set alignment cell

fin_row alignment row

node = linebreak_filter(node, boolean)
Override the linebreaking algorithm. The boolean is true if this is a
pre-display break.

node = post_linebreak_filter(node, string) Alter a node list afer line-
breaking has taken place. The string argument gives some context.

node = hpack_filter(node, string, number, string, string) ~ Alter a node
list before horizontal packing takes place. The first string gives some
context, the number is the desired size, the second string is either
"exact" or "additional" (modifies the first string), the third string is the
desired direction

node = vpack_filter(node, string, number, string, number, string) ~ Al-
ter a node list before vertical packing takes place. The second num-
ber is the desired max depth. See hpack_filter for the arguments.

node = pre_output_filter(node, string, number, string, number, string)
Alter a node list before boxing to \outputbox takes place. See
vpack_filter for the arguments.

hyphenate(node, node) ~ Apply hyphenation to a node list.

ligaturing(node, node) Apply ligaturing to a node list.

kerning(node, node) Apply kerning to a node list.

node = mlist_to_hlist(node, string, boolean) Convert a math node list
into a horizontal node list.

Font definition callback

metrics = define_font(string, number) Define a font from within lua
code. The arg are the lied information, with negative
numbers indicating scaled, positive numbers at

Event callbacks

pre_dump() Run actions just before format dumping takes place.
stop_run() Run actions just before the end of the typesetting run.
start_run() Run actions at the start of the typesetting run.

start_page_number()
message reporting.
stop_page_number()
message reporting.
show_error_hook() Run action at error reporting time.
finish_pdffile() Run actions just before the PDF closing takes place.

Run actions at the start of typeset page number

Run actions at the end of typeset page number

Font table

metrics = font.read_tfm(string, number)
the size indicated by the number.

metrics = font.read_vf(string, number)
Parse a virtual font metrics file, at the size indicated by the number.

metrics = font.getfont(number) Fetch an internal font id as a lua table.

font.setfont(number, metrics) ~ Set an internal font id from a lua table.

boolean = font.frozen(number) True if the font is frozen and can no
longer be altered.

number = font.define(metrics) Process a font metrics table and stores
it in the internal font table, returning its internal id.

number = font.nextid() Return the next free font id number.

number = font.id(string) Return the font id of the font accessed by the
csname given.

[number] = font.current(number]) Get or set the currently active font

number = font.max() Return the highest used font id at this moment.

number, metrics = font.each() Iterate over all the defined fonts.

Parse a font metrics file, at

Font loader table

table = fontloader.info(string) ~ Get various information fields from an

font file.
fontloader.info returned information:
key type explanation
fontname string the PostScript name of the font
fullname string the formal name of the font
familyname string the family name this font belongs to
weight string a string indicating the color value of the font
version string the internal font version
italicangle ~ float the slant angle

luafont, table = fontloader.open(string, [string]) ~ Parse a font file and
return a table representing its contents. The optional argument is the
name of the desired font in case of font collection files. The optional
return value contains any parser error strings.

Listing all of the substructure returned from fontloader.open would take

too much room, see the big reference manual.

fontloader.apply_featurefile(luafont, string)
fontloader table.

fontloader.apply_afmfile(luafont, string)
Apply an AFM file to a fontloader table.

Apply a feature file to a

Image table
Full list of </floatcontent>
<floatcaption>
<floattag>Figure 1l</floattag>
<floattext>It looks like a cow.</floattext>
</floatcaption>
</float>
</document>

Cross references are another relevant aspect of an export. In due time we will
export them all. It's not so much complicated because all information is there
but we need to hook some code into the right spot and making examples for
those cases takes a while as well.

\setupinteraction[state=start]
\starttext

\startchapter[title=0ne, reference=alphal]
In \in{chapter}[beta]
\stopchapter

\startchapter[title=Two, reference=beta]
In \in{chapter}[alphal
\stopchapter

\stoptext

We export references in the the ConTgXt specific way, so no interpretation takes
place.

<document language='en'>
<section detail='chapter' reference='alpha'>
<sectionnumber>l</sectionnumber>
<sectiontitle>0One</sectiontitle>
<sectioncontent>
In <link reference='beta' location='aut:2'>chapter 2</link> ...
</sectioncontent>
</section>

294

<section detail='chapter' reference='beta'>
<sectionnumber>2</sectionnumber>
<sectiontitle>Two</sectiontitle>
<sectioncontent>
In <link reference='alpha' location='aut:1'>chapter 1</link> ...
</sectioncontent>
</section>
</document>

As ConTEXt has an integrated referencing system that deals with internal as
well as external references, url's, special interactive actions like controlling
wigets and navigations, etc. and we export the raw reference specification as
well as additional attributes that provide some detail.

\setupinteraction[state=start]
\useurl [pragma] [www.pragma-ade.com]
\starttext
\startparagraph
You can visit \goto{pragma}[url(www.pragma-ade.com)].
\stopparagraph
\startparagraph
You can visit \goto{pragma}[url(pragma)].
\stopparagraph

\stoptext

Of course, when postprocessing the exported data, you need to take these vari-
ants into account.

<document language='en'>
<paragraph>You can visit <link reference='url(www.pragma-ade.com)' url='www.pra
<paragraph>You can visit <link reference='url(pragma)' url='www.pragma-ade.com'
</document>

12.5 Math

Of course there are limitations. For instance TgXies doing math might wonder
if we can export formulas. To some extend the export works quite well.

295

\starttext
Is it $ e = mc"2 $ maybe:

\startformula
m = \frac{\sqrt{e}}{c}
\stopformula

\stoptext
This results in the usual rather verbose presentation MathML:

<document language='en'>
Is it
<math>
<mrow>
<mi></mi>
<mo>=</mo>
<mi></mi>
<msup>
<mi></mi>
<mn>2</mn>
</msup>
</mrow>
</math>
maybe:
<formula>
<formulacontent>
<math>
<mrow>
<mi> </mi>
<mo>=</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mo>v </mo>
<mroot>
<mi></mi>
</mroot>
</mrow>
</mrow>
<mrow>

296

<mi> </mi>
</mrow>
</mfrac>
</mrow>
</mrow>

</math>

</formulacontent>
</formula>

</document>

More complex math (like matrices) will be dealt with in due time as for this and
Aditya and I have to take tagging into account when we revision the relevant
code as part of the MKIV cleanup and extensions. It's not that complex but it
makes no sense to come up with intermediate solutions.

Display verbatim is also supported. In this case we tag individual lines.
\starttext

\starttyping
line one
line two
\stoptyping

\stoptext
The export is not that spectacular:

<document language='en'>
<verbatimblock detail='typing'>
<verbatimline>
line one
</verbatimline>
<verbatimline>
line two
</verbatimline>
</verbatimblock>
</document>

A rather special case are marginal notes. We do tag them because they often
contain usefull information.

\starttext

297

\startparagraph
test \inleft{left 1} test
\stopparagraph

\margintitle{left 2}

\startparagraph
test test
\stopparagraph

\startparagraph
\inrightmargin{\slanted{right 1}}test
\stopparagraph

\stoptext
The output is currently as follows:

<document language='en'>

<paragraph><margintextblock detail='left'>left 1l</margintextblock> test
test</paragraph>

<paragraph>test test</paragraph>

<paragraph><margintext detail='inrightmargin'> right l</margintext>
</paragraph></document>

However, this might change in future versions.

12.6 Formatting

The output is somewhat formatted. The extra run time needed for this (actu-
ally, quite some of the code is related to this) is compensated by the fact that
inspecting the result becomes more convenient. Each environment has one
of the properties inline, mixed, and display. A display environment gets new-
lines around it and an inline environment none at all. The mixed variant does
something in between. In the following example we tag some user elements,
but you can as well influence the built in ones.

\setelementnature[display][display]
\setelementnature[inline] [inline]

\setelementnature[mixed] [mixed]

\starttext

298

\startelement[display]
\startelement[inline]
test
\startelement[display]
test
\stopelement
test
\stopelement
\stopelement

\stoptext
This results in:

<document language='en'>
<display>

<inline>test <display> test test</display></inline>
</display>

</document>

Keep in mind that elements have no influence on the typeset result apart from
introducing spaces when used used this way (this is not different from other
TiX commands). In due time the formatting might improve a bit but at least
we have less change ending up with those megabyte long one-liners that some
applications produce.

12.7 A word of advise

In (for instance) html class attributes are used to control rendering driven by
stylesheets. In ConTgXt you can often define derived environments and their
names will show up in the detail attribute. So, if you want control at that level
in the export, you'd better use the structure related options built in ConTEXt,
for instance:

\definehead[specialsection][section]
\starttext
\startsection[title=Normal section]

normal
\stopsection

299

\startspecialsection[title=Special section]
special
\stopspecialsection

\stoptext
This gives two different sections:

<document language='en'>
<section detail='section'>
<sectionnumber>1l</sectionnumber>
<sectiontitle>Normal section</sectiontitle>
<sectioncontent>
normal
</sectioncontent>
</section>
<section detail='specialsection'>
<sectionnumber>2</sectionnumber>
<sectiontitle>Special section</sectiontitle>
<sectioncontent>
special
</sectioncontent>
</section>
</document>

12.8 Conclusion

It is an open question if such an export is useful. Personally I never needed a
feature like this and there are several reasons for this. First of all, most of my
work involves going from (often complex) xml to pdf and if you has xml as input,
you can also produce html from it. For documents that relate to ConTEXt I
don't need it either because manuals are somewhat special in the sense that
they often depend on showing something that ends up on paper (or its screen
counterpart) anyway. Loosing the makeup also renders the content somewhat
obsolete. But this feature is still a nice proof of concept anyway.

300

Marking Proof-sheets in Publishing Practice and
Its Implementation in the TEX System
Oznacovani korekturnich obtahti v nakladatelské
praxi a jeho implementace v systému TEX

| ToMAS HALA I

Abstract: This paper deals with ways of marking proof-sheets in publishing
practice. Four possible solutions are shown and discussed. Three of them are
based on existing macros (page style \headings), or packages (fancyhdr.sty,
zwpagelayout.sty), the fourth one is original and specific, and contains new
style for IXTEX — thproof.sty.

Keywords: proof-sheets, proof-reading, publishing practice, I/TEX, styles,
thproof.sty

Abstract: Tento ¢lanek se zabyva moznostmi oznacovani korekturnich obtahtu
v nakladatelské praxi a predstavuje ctyri takova reseni. TTi z nich vyuzivaji exis-
tujici makropiikazy nebo styly (\headings, fancyhdr.sty, zwpagelayout.sty).
Ctvrté je ptvodni a specializované feseni pomoci nového stylu pro IATEX —
thproof.sty.

Klicova slova: korektury, korekturni obtahy, nakladatelskd praxe, IATEX,
styly, thproof.sty

1. Introduction

Even the most modern technologies cannot prevent various mistakes in text pro-
cessing. Therefore, proofreading is a very important and often priceless activity.

Basic review of proofreading topic, i.e. itemisation of proofreading accord-
ing to time and content points of view, organisational and methodical ways of
proofreading and a comparison of ‘classical’ and modern procedures has been
published earlier (HALA, 2002). Of these topics, itemisation proofreading will
be mentioned in this paper.

2. Itemisation of proofreading

From the time point of view (PopP, FLEGR A PoP, 1989) proofreading consists
of four basic parts:

doi: 10.5300/2011-2-4/301 301

 internal galley

e author’s galley

« internal page

e author’s page

Internal proofreading covers all editing and typesetting corrections carried
out in composing room, while author’s proofreading is performed by the author
himself /herself, or — in some specific cases — by an editor.

From the content point of view, we can distinguish:

editor’s proof — verifies documentary part of text;

language proof — eliminates ortographic mistakes, wrong punctuation, mis-
spelings;

proof of style — is connected with editing activities;

proof of formal matters — checks references, numbers of figures and tables,
their numbering vs. references in the text; unification of proper emphasis-
ing style, and of different styles used by various authors;

typographic proof — checks proper typefaces, symbols, indentation, placing
of objects, typesetting of tables, etc.;

graphical —looks into colour management, colourfulness, contrast, backgrounds,
etc.;

technical proof — deals with pagenumbering, signature imposition, technical
quality for printing, etc.

Each company, performing larger number of jobs — whether publishing house
or (typo)graphical studio — has to keep out of troubles caused by disordered
proof-sheets.

Therefore, proof-sheets are usually marked not only by name of the job, but
also by additional pieces of information:

o date and time (of printing, usually)

o number of the job

¢ type of proofreading, including ordinal number

e typesetter’s name and signature

e proofreader’s name and signature

 author’s/client’s signature (only for authors’ proofreading)

3. Review of solutions based on existing methods

3.1. Page style headings

The principle of page layout is based on definitions prepared in the format ATEX.
Two basic page styles empty and plain are extended by page styles heading and
myheading which are included as a part of pre-defined classes, e.g. article.cls,
book.cls.

302 TeXperience 2010 — JOB # 1/2010 — JOB: Brejlov — Page 302
clanek-thproof (clanek-thproof) — 2. author’s page proofsheet — May 7, 2012

Page styles are activated by macro (\pagestyle{headings}) in the preamble
of a document for the whole document, or by \thispagestyle{headings} if the
property is applied only to one concrete page.

\pagestyleheadings

\begindocument

\markright\footnotesize \TeX --
%Brejlov-- 2nd, author's page proofsheet,
September 16, 2010, --

testing-headings -- p. 1

The head line contains only one line, for longer text the user has to use some
advanced solution.

With this style no extra additions are needed for changing the layout of a
document. Setting a layout in this way does not, however, belong to popular
methods. This is proved by the very existence of the package fancyhdr.sty
which has been created for simplifying I¥TEX users work.

3.2. Package fancyhdr.sty

Package fancyhdr.sty (OOSTRUM, 2005) makes the configuration of the page
style more simple. The following figure shows the use of commands fancyfoot
and fancyhead parametrised by positions of elements.

\fancyfoot [0C,EC]{\thepage}

\fancyfoot [OL,ER]{\TeX\ -- Brejlov -- 2., autorské strankové
korektury\\\today\ -- \jobname\ --
str. \thepage}

This is a testing
page.

1
TeX — Brejlov — 2nd, author’s page proofsheet
September 16, 2010 — testing-fancy — p. 1

TeXperience 2010 — JOB # 1/2010 — JOB: Brejlov — Page 303 303
clanek-thproof (clanek-thproof) — 2. author’s page proofsheet — May 7, 2012

The package fancyhdr.sty seems to be very useful for user’s styling, how-
ever, for joining the design information with proof-sheet marking one has to
apply the proof-sheet marking settings to each change of style, i.e. to each use
of the corresponding macros which might cause some inconsistences.

3.3. The package for the page layout zwpagelayout.sty
This package has been written by WAGNER (2008) as a very complex and useful
solution for all who want to prepare layout definitions comfortably.

The package is useful also for preparation of book covers. It contains a tool
for placing the marks showing the position of spine, flaps, frames, etc. It also
supports crop titles:

\usepackage [a6,Landscape, croptitle=\TeX\ --\ Brejlov\ --\ 2.{,}\
autorské\ strankové\ korektury]{zwpagelayout}

+ | |+

This is a testing
page.

+ ‘ TEX — Brejlov — 2nd, author’s page proofsheet, testing-zw: #1 ‘ +

However very useful is this tool, there are some limitations. First, the com-
mand \usepackage ignores spaces between words in options, so the user has to
write ‘backslashed’ spaces instead of normal ones®, or to enclose the text with
an extra pair of braces.

Moreover, the crop title option is joined with the pair cropmarks/nocrop-
marks option so that displaying the crop title is excluded when the typesetter
decides to suppress crop marks.

Limiting is also the length of crop title value: only one line is permitted? so
that the complete information cannot always be displayed.

1Similar approach require commas: they work as delimiters between options, so the proper
writing is somewhat tricky, e.g. {,}.
2The thing is that the command \\ is supressed in options of \usepackage.

304 TeXperience 2010 — JOB # 1/2010 — JOB: Brejlov — Page 304
clanek-thproof (clanek-thproof) — 2. internal page proofsheet — May 7, 2012

4. Specialised solution: style thproof.sty

This package is the result of a development inspired by author’s everyday needs.
The first version of this style has been prepared in 2001 for internal use in the
publishing house KONVOJ, the latest version (1.06, 2004) has been published
at www.konvoj.cz/styles/korek.

The basic requirement were: (a) independence of marking up and layout
definitions, (b) portability between IATEX 2.09, INTEX 2¢, formats cslatex, pdf-
cslatex, etc.

The work matured in thproof.sty (successor of korek.sty); the name of
this style has been chosen so as not to be in conflict with the style proof.sty
(TATSUTA, 1990), which improves some mathematical matters.

4.1. Implementation
This solution is based on redefining the low-level TEX structures. The macro
\@outputpage encloses among other things the call of macro \shipout sending
the prepared vertical box with contents of the page to the output. In this vertical
box, the extra part has been added (see page ?7; for transparent programming,
it has been expressed by one macro (thproof@markspace) defined in advance.
For preparing the marking structure, the IWTEX environment picture has been
used, as follows:

\def \thproof@markspace{{\unitlengthlcc
\begin{picture}(0,0)

\put (\thproof@x, \thproof@y) {%
\parbox{\hsize}{\thproof@font\thproof@textl}}
\end{picture}}}

4.2. User interface
The following commands have been defined for users:

TeXperience 2010 — JOB # 1/2010 — JOB: Brejlov — Page 305 305
clanek-thproof (clanek-thproof) — 2. internal page proofsheet — May 7, 2012

| name of the macro and its parameters | note
1& 2 | \thproofPosition {0}{-38%} a position, where the marking text
will be placed;
default unit is lcc
3 | \thproofCompany {\TeXpe... 2010} | name of a (publishing) company
4 | \thproofJobNo {1/2010%} internal job number in
a (publishing) company
5 | \thproofJob {Brejlov} job name or client’s name
6 | \thproofAuthor - author’s proofreading
6 | \thproofHome - internal proofreading
7 | \thproofGalley {1st} galley proofreading and its number
7 | \thproofPage {2nd} page proofreading and its number
— | \thproofImprimatur | - produces a stamp for authorisation
— | \thproofEnd - no marking texts will be printed

On the preceeded pages the markuping text has been generated by

\thproofAuthor

\thproofJob{Brejlov}
\thproofGalley{1.}

\thproofJobNo{1/20103}

\thproofPosition{0}{0}
\thproofCompany{\TeXperience 2010}

and

\thproofHome \thproofPage{2.}

respectively.

One can also use the shorter version via general setting command:

\thproofSettings{0}{-65}{\TeX{}perience 2010}
{1/2010}{Brejlov}
{HHGH1}

The order of the first seven parameters corresponds to the table above, the
eighth one is the number of a proofsheet.
For the final version of a document the supplier very often requires the client’s
signature which expresses the client’s authorisation of the document before print-

ing.

Macro \thproof Imprimatur® generates the stamp containing the space for
the date and client’s signature.

3Imprimatur is a Latin word
with meaning let it be printed.

306

TeXperience 2010
JOB: 1/2010- p. 306

IMPRIMATUR

Date
16.9.2010

Signature

When marking the text is not necessary, e.g. for the printing version, it can
be switched off using macro \thproofEnd.

5. Conclusion

The proper marking proof-sheets is necessary because of organisational rea-
sons. In this article, three possible solutions are shown (\headings, packages
fancyhdr.sty, zwpagelayout.sty). None of them — even if they are based on
existing styles, partly very sophisticated ones — do not live to expectations of
the author of this article — some technical restrictions obstruct comfortable use
for proof-sheet marking.

Therefore the main point of this work was to present the new way of solving
mentioned problems. The IXTEX style thproof . sty seems, from the user’s point
of view, to be fairly simple and comfortable solution. Macros covering each
part of proof-sheet description have been shown, as well as one general setting
command.

This style is maintained by author and tested in his publishing practice.

References

HALA, ToMAS. Korektury a korektofi v 21. stoleti. [Proofreading and proofreaders in the 21st
century]. Zpravodaj Ceskoslovenského sdrufeni uZivateli TpXu, 2002, 3-4, s. 152-159.
(ISSN 1211-6661.)

VAN OOSTRUM, PIET. fancyhdr.sty. In FEUERSTACK, THOMAS; BERRY, KARL; KoOCH,
RICHARD; LoTz, MANFRED (EDS.) TgX Collection, August 2010 [DVD]. Berlin:
Lehmanns Media, c2005. (ISBN 978-3-86541-401-4.)

Popr, PAVEL; FLEGER, JINDRICH; PoP, VLADIMIR. Sazba I Rucni sazba [Typesetting I]. 2. vyd.
Praha: SPN, 1989. 188 s.

TATSUTA, MAKOTO. proof.sty. In FEUERSTACK, THOMAS; BERRY, KARL; KOCH, RICHARD;
Lotz, MANFRED (EDS.) TEX Collection, August 2010 [DVD]. Berlin: Lehmanns
Media, ¢1990-2005. (ISBN 978-3-86541-401-4.)

WAGNER, ZDENEK. zwpagelayout.sty. In FEUERSTACK, THOMAS; BERRY, KARL; KocCH,
RICHARD; LoTz, MANFRED (EDs.) TgX Collection, August 2010 [DVD]. Berlin:
Lehmanns Media, c2008. (ISBN 978-3-86541-401-4.)

TeXperience 2010
JOB: 1/2010- p. 307

IMPRIMATUR

Date Signature
16.9.2010

307

Integration of thproof@markspace into Coutputpage (the source code has been taken
from latez.ltz):

\def\@outputpage{’%
\begingroup % the \endgroup is put in by \aftergroup
\let \protect \noexpand
\@resetactivechars
\@parboxrestore
\shipout \vbox{’
\set@typeset@protect
\aftergroup \endgroup
\aftergroup \set@typeset@protect
% correct? or just restore by ending
% the group?
\if@specialpage
\global\@specialpagefalse\Cnameuse{ps@\Qspecialstyle}’
\fi
\thproof@markspace
\if@twoside
\ifodd\count\z@ \let\@thehead\@oddhead \let\@thefoot\@oddfoot
\let\@themargin\oddsidemargin
\else \let\@thehead\@evenhead
\let\@thefoot\Qevenfoot \let\Othemargin\evensidemargin
\fi
\fi
\reset@font
\normalsize
\baselineskip\z@skip \lineskip\z@skip \lineskiplimit\z@
\@begindvi
\vskip \topmargin
\moveright\Qthemargin \vbox {%
\setbox\@tempboxa \vbox to\headheight{%
\vfil
\color@hbox
\normalcolor
\hb@xt@\textwidth {%
\let \label \@gobble
\let \index \@gobble
\let \glossary \@gobble %% 21 Jun 91
\@thehead
Y
\color@endbox
Y %h 22 Feb 87
\dp\@tempboxa \z@
\box\@tempboxa
\vskip \headsep
\box\@outputbox
\baselineskip \footskip
\color@hbox
\normalcolor
\hbext@\textwidth{%
\let \label \@gobble
\let \index \@gobble % 22 Feb 87
\let \glossary \@gobble %% 21 Jun 91
\@thefoot
Y
\color@endbox
Y
Y
\global \@colht \textheight
\stepcounter{page}’
\let\firstmark\botmark
}

Tomd$ Hdla

1. Department of Informatics, Faculty of Economy, Mendel University, Brno,
Zemédélskd 1, 613 00 Brno, Czech Republic

2. Publishing house KONVOJ, spol. s r.o0. (Ltd.), Brno, Czech Republic
email: thala@mendelu. cz, konvoj@konvoyj.cz

TeXperience 2010
JOB: 1/2010- p. 308

IMPRIMATUR

Date Signature
308 16.9.2010

Fonts with Complex OpenType Tables
Fonty se slozitymi tabulkami ve formatu
OpenType

l KAREL PiSka I

Abstract: The paper presents development of complex OpenType fonts. The
sample fonts cover Czech and Georgian handwriting with numerous letter con-
nections.

At the beginning, general principles of “advanced typography” are shown —
complex metric data represented by OpenType tables (GSUB and GPOS) — and
compared them with the ligature and kerning tables in METAFONT.

Then the history of the OpenType font production is described — approaches,
tools and techniques. Crucial problems, critical barriers, attempts and ways how
to reach successful solutions, are discussed and several tools for font creating,
testing, debugging and conversions between various text and binary formats are
demonstrated. Among these tools are, for example, AFDKO, VOLT, FontForge,
TTX, Font-TTF. Their features, advantages, disadvantages, and also cases of
possible incompatibilities (or maybe errors) are illustrated.

Finally, using the OpenType fonts in the TEX world applications are pre-
sented: XgTEX and LuaTEX (CONTEXT MKIV), the programs allowing to read
and process OpenType fonts directly.

Key words: font, font production, Unicode, OpenType, GSUB, GPOS; AFDKO,
VOLT, FontForge, TTX, Font-TTF; TEX, METAFONT, TFM, X{TEX, CONTEXT,

LuaTgX.

Abstrakt: Clanek popisuje v§voj slozitych fontt ve formatu OpenType v letech
2009-2010. Ukéazky zahrnuji cesky a gruzinsky rukopisny font s mnohocetnymi
spojenimi mezi sousednimi pismeny.

Na zacatku ukézeme obecné principy ,,pokrocilé typografie“: slozitd metricka
data reprezentovana tabulkami GSUB a GPOS v OpenType, které porovname
s tabulkami ligatur a kerningt v METAFONTu.

Potom popiseme historii tvorby OpenTypového fontu: postupy, néstroje
a techniky. Probereme klicové problémy, zavazné prekazky, pokusy a zpusoby
feSeni k dosazeni tspésného vysledku. Predvedeme nékolik néstroju pro tvorbu,
testovani a ladéni font a konverze mezi ruznymi textovymi a bindrnimi formaty
jejich reprezentace. Jsou to napt. AFDKO, VOLT, FontForge, TTX, Font-TTF.
Budeme ilustrovat jejich vlastnosti, vyhody, nevyhody, také i pripady moznych
nekompatibilit (anebo moznych chyb).

Nakonec predvedeme pouziti OpenTypovych fontt v rdmci TEXu: XfTEX
a LuaTEX (CoNTEXT MKIV) jsou programy dovolujici &ist a zpracovavat fonty
OpenType pfimo, tj. bez tradiénich metrik TFM.

doi: 10.5300,/2011-2-4/309 309

Kli¢ova slova: font, tvorba fonti, Unicode, OpenType, GSUB, GPOS; AFDKO,
VOLT, FontForge, TTX, Font-TTF; TEX, METAFONT, TFM, X{TEX, CONTEXT,

LuaTgX.

1. Introduction

The presented fonts are successors of the METAFONT fonts designed in 1997-98
by Ol§dk [2] and Piska [3]. Last year (2009) it was not possible for me to create a
complete font with OpenType tables that would work properly. This year, finally
positive results have been reached. The current article can be considered as a
report summarizing my recent studies, experiments and experiences for dialogs
and future collaboration with involved people. My main direction prefers the usage
of fonts within TEX based software providing Unicode and OpenType support —
XATEX [9] and CoNTEXT/LuaTEX [11]. For OpenType the abbreviation “OT”
will also be used in the article.

2. Advanced typography

Under “advanced typography” not only so called OpenType font technologies
but also our good “old” TEX&METAFONT capability providing sophisticated
word-processing can be assumed.

2.1. TEX & METAFONT — clear and clean

In fact, advanced typography with METAFONT and TEX has been available for
TEX users for many years. METAFONT contains powerful tools like generalized
ligatures together with boundary characters [1]:

.mf: ligtable ¥ produces % .tfm/.pl

a: b |=:] c; % acdh /LIG/ 1
a: b |=:1> c¢; % acd /LIG/> 2
a: b |=:1>> ¢c; % acdb /LIG/>> 3
a: b =:| c; hch LIG/ 4
a: b =:1> ¢; % cb LIG/> 5
a: b |=: c; % ac /LIG 6
a: b |=:> c; % ac /LIG> 7
a: b =: c; h c LIG 8
where

1. retains both a and b, inserts ¢ between: acb

310

2. retains both a and b, inserts ¢ between;
the processing continues after a: ach

3. retains both a and b, inserts ¢ between;
the processing continues after c: acb

4. retains b, inserts ¢ before b: cb

5. retains b, inserts ¢ before b;
the processing continues after c: cb

6. retains a, inserts c after a: ac

7. retains a, inserts c after a;
the processing continues after a: ac

8. substitutes both a and b by c.

Boundary characters. The METAFONT and TEX concept of the “word bound-
ary” (the left and right boundary characters) allows “implicit” processing of the
beginning and the end of the word, i.e., a substitution or adjustment of the letters
in the “initial” and the “final” position of the word. In METAFONT sources the left
boundary characters is denoted by " | |:", the right boundary character must be
introduced as the “real” character using the "boundarychar code" ;" assignment.

These facilities allow to apply substitution and positioning rules with some
restrictions: only the pair of two adjacent characters can be processed, it is
impossible to look ahead for longer sequence in a simple way; the maximum
of glyphs in one font is 256. However, definitions of ligatures and kernings in
METAFONT and then in TFM, and also the processing algorithm in TEX are clear
and clean. The actual position in the input stream and how to find the next rule
from TEX metrics tables that have to be applied are always known.

Abilities of METAFONT and TEX will be demonstrated by two short samples.
Primarily, by default, the Latin (Czech) letters are in the “medial” form, without
connecting strokes. Then the TEX&MF “machinery” joins the adjacent letters in
words and adjusts the letters in the initial and final positions. The letter ‘e’ is
preceded by one of the front-end strokes, ‘s’ and ‘t” are joined by the corresponding
inter-letter connecting stroke, and, finally, the last letter in the word is closed
by the ending stroke. METAFONT defines several initial, medial and final strokes
(depending on concerned letters), for example:

% left deflected end of character
beginchar(3, 6u#, 7u#, 0);

draw (0,0){(3,2)}..{sklon2}(6,6);
endchar;
% shorter convex stroke for the pairs st,...
beginchar(6, 3u#, 7u#, 0);

draw (-4,0){right}..{sklon2}(3,6);
endchar;
% right end of character
beginchar(1l, .7u#, 7u#, 0);

draw (0,6)..(.7,7);
endchar;

311

and the ligtable instructions

ligtable ||: "e" |=:1>3; % ...
ligtable "s": "t" |=:| 6; % ...
boundarychar:=1;
ligtable "a": rightboundaries;
def rightboundaries =

1 |=:>1,
/S
enddef;

invoke inserting the requested strokes in the left boundary point (3), between ‘s’
and ‘t’ (6), and in the right boundary position (1).

L J ﬁd/
/[/J/ﬁd/'

eilas

METAFONT cannot process in a single and natural way any character se-
quences consisting of three or more characters, e.g. triplets like "UN-KAN-AN" and
"UN-KAN-EN" in Georgian handwriting.

Depending on the following character ("AN", "EN" or another) the original
(“isolated” by default) glyph "KAN" is, or is not, replaced by its modified form:

ligtable GR_KAN: GR_AN =:| GR_kan_;

and then it may be joined to the next character by the connecting stroke:

ligtable GR_kan_: GR_AN |=:| gr_en__an;

JIPddd

But no substitution and no kerning is defined for the pairs "UN-KAN" and
"KAN-EN". After processing of the pair consisting of the second and third charac-
ter and substituting of the second glyph there is no chance to return before the
first character it is not possible to adjust the kerning between the first and the
second, modified, glyph (left) — while "UN-KAN-EN" (right) needs no substitution

312

or positioning changes. Two triplets above should be processed differently. It may
probably be possible but the solution with METAFONT would not be trivial.

2.2. Advanced typography with OpenType

“Old TrueType fonts” can be “enriched” by adding “Advanced OpenType Typo-
graphic Tables” to produce fonts in OpenType format. Since the additional OT
tables are common, two different format versions: “new” TTF and OTF will not
be discussed.

Each feature is defined as a system of subsystems called lookups. Any lookup
is described as a subsystem consisted of substitution and positioning rules. De-
pending on script and language, a feature may be enabled or disabled. If the
feature is enabled and some lookup, contained in this feature, fulfill the given
conditions, then the execution of the corresponding operations should be invoked.
It is a signal and the real application must be executed by an application program
or operating system, e.g., by means of a special library. OpenType introduces
substitution (GSUB), positioning (GPOS), and several other tables.

These tables define the set of rules of several types specifying (from OpenType
specification [4, 5]):

Glyph substitution (GSUB) rules — Single, Multiple, Alternate, Ligature,
Contextuali, Chaining contextual, Extension, and Reverse Chaining Single Sub-
stitution;

Glyph positioning (GPOS) rules — Single adjustment, Pair adjustment, Cursive
attachment, Mark-to-Base attachment, Mark-to-Ligature attachment, Mark-to-
-Mark attachment, Contextual, Chaining contextual, and Extension positioning.

>From METAFONT entire letters with accents are inherited. Therefore, there
is no need to use marks and anchors and operations with them to assemble the
complete letters from components (accents, signs, marks, ...) and the Mark
positioning rules are not used. On the other hand, the fonts contain hundreds
contextual substitution and positioning rules.

First, an OpenType font has to be created properly, using some suitable tools.
Secondly, the font must be in agreement with the corresponding software to
execute adequate operations according to the rules (instructions) defined in the
font.

3. Tools to produce OpenType fonts
3.1. Creating OpenType fonts

Let us assume that Unicode encoded outline fonts have already been encoded,
though without OpenType features. These have been generated earlier with Font-

313

Forge. The aim and task is to produce OpenType, i.e., to enrich the fonts with
OT tables.

The fonts used/presented in this paper cover Czech, Georgian and also Ar-
menian handwriting letter repertoire (taught in primary/elementary schools).
Opposite to Czech and Georgian writing, the Armenian letters are designed and
written in a simple way without no special joiners and there is no necessity to
build any OpenType support/facility for Armenian.

Sample of Armenian: R N

There is, however, another problem — to distinguish the adjacent letters.

In the following paragraphs the construction of OT fonts using various tools,
namely VOLT, FontForge and AFDKO, are shown.

The specification of (binary) OT tables, data formats of the VOLT project
files, variants of feature files accepted by AFDKO, FontLab, FontForge may all
be different.

3.2. Managing OpenType with VOLT
VOLT (Visual OpenType Layout Tool) [6], free product developed by Microsoft
and running only under MS Windows, offers an interactive approach to fill
input areas with appropriate parameter values manually in the VOLT project
window. Another possibility is writing and modifying source textual files in the
VOLT project language. In the VOLT input area one can enter, or in a text
editor we have to define glyphs (their names, types and code numbers), glyph
groups (glyph sets or glyph lists), context conditions, substitution and positioning
rules, and finally, to complete the hierarchy of scripts, languages, features, and
lookups; those data can be saved and (re)read. Such method is reasonable and
purposeful /meaningful for fonts with several hundreds contextual substitution and
positional rules (our font contains about 350 glyphs, more than 600 substitutions
and about 50 positionings). Of course, interactive design and especially proofing
tools for testing tasks, have been used but the files defining OpenType data
have been completed in the VOLT project (VTP) source/exchange format from
some tables by scripting and editing texts. VOLT allows to read the font only
in TrueType format, imports the VOLT project file, compiles OT data and then
generates the font with binary OT tables. That is, VOLT adds OT tables and
proofs the features and lookups; it accepts only the fonts with OT tables produced
by VOLT, and deletes other OT tables. Moreover, (re)compilation must always
be run before testing in the proofing window, even for fonts generated by program
VOLT. These fonts embed additionally special tables ‘TSID’, ‘T'SIP’, ‘TSIS’, and
‘T'SIV’ for proofing.

A general structure of a lookup with substitutions in the VOLT project
language (in my symbolic notation) is:

314

DEF_LOOKUP lookup_name lookup_parameters
[IN_CONTEXT | EXCEPT_CONTEXT
[[LEFT | RIGHT] glyph_list]

END_CONTEXT
]
AS_SUBSTITUTION
SUB glyph_list WITH glyph_list END_SUB
[SUB glyph_list WITH glyph_list END_SUB]

END_SUBSTITUTION

It is a sequence of one or more substitution rules and has the common con-
textual condition. The context may be defined as a compound logical expression.
During the evaluation process the glyphs from the given glyph lists before (LEFT)
or after (RIGHT) are compared relative to the current glyph according to their
presence (IN_CONTEXT) or absence (EXCEPT_CONTEXT). Sequences of more LEFT
and/or RIGHT subconditions can constitute left and right chains, their lengths
depend of the numbers of the left and right conditions. In nested subexpressions,
IN/EXCEPT_CONTEXT might be repeated more times, all of them are subsequently
evaluated as a logical union.

The lookup _parameters contain the instructions for processing like PROCESS_-
BASE, PROCESS_MARKS, ALL, DIRECTION LTR or DIRECTION RTL, etc. In our case
— DIRECTION LTR (“left to right”) — ‘left’ always means ‘before’; similarly ‘right’
and ‘after’ have the same meaning.

Representation of the VOLT Project data allows insertions, and also different
rule types may be in one lookup because the VOLT compiler accepts such rules
and can compile them when converting the source data into binary OpenType
tables. A final binary font then includes more than 100 internal features, numbered
zz01,..., zz99,... It means, the higher level of the VOLT project language turns
into greater complexity of the compiled product.

The following text demonstrates several complete examples describing the
lookups in the VOLT project textual representation as they are present in my
source files of the VOLT based fonts.

3.2.1. Glyphs, scripts, languages and features

But at first other elements of the VTP will be mentioned. All glyphs must be
listed in the glyph definition section, each glyph command must have in the
DEF_GLYPH its unique name, its ordinal number (index) in the font ID, its TYPE
(BASE, MARK, COMPONENT, LIGATURE), the UNICODE number must be present for
the Unicode coded glyphs and are missing for the glyphs from Private Use Area
(PUA).

315

Glyphs can be grouped/collected in named groups to address the groups
(glyph lists) in rules simply and shortly. DEF_GROUP commands may consist of
glyph sequences GLYPH glyph__name, glyph ranges, and also other glyph groups,
defined elsewhere but without ambiguity.

DEF_GROUP "czever"

ENUM RANGE "a" TO "z" GROUP "accver"
END_ENUM

END_GROUP

The names of glyphs and groups must be quoted, e.g., GLYPH "hyphen" or
GROUP "czever".

3.2.2. Single substitution
Switching the corresponding feature we can invoke the substitution of the letters

by their short variants.

DEF_LOOKUP "GeorAlt" PROCESS_BASE ALL DIRECTION LTR
AS_SUBSTITUTION

SUB GLYPH "uni1OD3" WITH GLYPH "GR_varD" END_SUB
SUB GLYPH "unilODA" WITH GLYPH "GR_varL" END_SUB
SUB GLYPH "uni1ODD" WITH GLYPH "GR_varQ" END_SUB
SUB GLYPH "unilOEO" WITH GLYPH "GR_varR" END_SUB
END_SUBSTITUTION

N3 /3 /3
oS- 4O /O

3.2.3. Ligature substitution
Typical ligatures can be defined by unconditional substitutions.

DEF_LOOKUP "liga" PROCESS_BASE ALL DIRECTION LTR
AS_SUBSTITUTION
SUB GLYPH "comma" GLYPH "comma" WITH GLYPH "quotedblbase" END_SUB
SUB GLYPH "quoteleft" GLYPH "quoteleft" WITH GLYPH "quotedblleft" END_SUB
SUB GLYPH "hyphen" GLYPH "hyphen" GLYPH "hyphen" WITH GLYPH "dash" END_SUB
SUB GLYPH "hyphen" GLYPH "hyphen" WITH GLYPH "minus" END_SUB
END_SUBSTITUTION

3.2.4. Contextual substitution

Before the letters defined by the right context the letters listed later will be
changed to their narrower variants (the unadjusted versions in parenthesis).
DEF_LOOKUP "CZEbmnvwy" PROCESS_BASE ALL DIRECTION LTR

IN_CONTEXT

RIGHT ENUM GLYPH "m" GLYPH "n" GLYPH "ncaron" GLYPH "v" GLYPH "w"

GLYPH "y" GLYPH "yacute" END_ENUM

END_CONTEXT

AS_SUBSTITUTION
SUB GLYPH "b" WITH GLYPH "bnarrow" END_SUB 5L g‘ Ag7b/ <KJH/)

SUB GLYPH "o" WITH GLYPH "onarrow" END_SUB

SUB GLYPH "oacute" WITH GLYPH "oacutenarrow" END_SUB
SUB GLYPH "v" WITH GLYPH "vnarrow" END_SUB Vel ,Qﬁ%/ (y*y/J
SUB GLYPH "w" WITH GLYPH "wnarrow" END_SUB

END_SUBSTITUTION

wwm(m}

316

Following some letters (the left context) the letters “s” and

by their ‘depth’ forms.

DEF_LOOKUP "CZEgjqy" PROCESS_BASE ALL DIRECTION LTR
IN_CONTEXT
LEFT ENUM GLYPH "g" GLYPH "G" GLYPH

AS_SUBSTITUTION
SUB GLYPH "s" WITH GLYPH "sdepth" END_SUB
SUB GLYPH "scaron" WITH GLYPH "scarondepth" END_SUB

END_SUBSTITUTION

3.2.5. Contextual insertion

nin

j" GLYPH "J" GLYPH "q" GLYPH "Q"
GLYPH "y" GLYPH "yacute" GLYPH "Y" GLYPH "Yacute" END_ENUM
END_CONTEXT

Wy
S

are substituted

Between the selected glyphs and their right successors the joining stroke will be
inserted.
DEF_LOOKUP "CZEjoins_s" PROCESS_BASE ALL DIRECTION LTR
IN_CONTEXT

RIGHT ENUM GLYPH "m"
GLYPH "v" GLYPH "w" GLYPH "y" GLYPH "yacute" GLYPH "z" GLYPH "zcaron" END_ENUM

END_CONTEXT

AS_SUBSTITUTION
"s" WITH GLYPH "s" GLYPH "joins" END_SUB
"scaron" WITH GLYPH "scaron" GLYPH "joins" END_SUB

SUB
SUB
SUB
SUB
SUB
SUB

GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH

"sleft" WITH GLYPH "sleft" GLYPH "joins" END_SUB
"scaronleft" WITH GLYPH "scaronleft" GLYPH "joins" END_SUB

GLYPH

n

n" GLYPH

"ncaron" GLYPH

ngn

GLYPH

"sdepth" WITH GLYPH "sdepth" GLYPH "joins" END_SUB

"scarondepth" WITH GLYPH "scarondepth" GLYPH "joins" END_SUB

END_SUBSTITUTION

3.2.6. Kerning positioning

"tcaron"

This lookup operating on glyph pairs defines the kern advances between several
FIRST and one SECOND glyph (unil10D6). There are no explicit shifts for the first
glyphs, otherwise the second glyph is moved by two values, DX and ADV, for
left and ride sides, respectively. In other words, the value DX defines position of
the second glyph to the first glyph, whereas the value ADV adjusts the position
of the third glyph which follows the pair.

DEF_LOOKUP "GEOzen" PROCESS_BASE ALL DIRECTION LTR

AS_POSITION
ADJUST_PAIR
FIRST ENUM GLYPH

GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH

"unilOD5"
"uni1OD9"
"unilODD"
"unilOE1"
"unilOE3"

"unilOD3" GLYPH

GLYPH
GLYPH
GLYPH
GLYPH
GLYPH

"unilOD6"
"uni1ODA"
"GR_varQ"
"GR__san"
"unilOQE4"

"GR_varD" GLYPH

GLYPH
GLYPH
GLYPH
GLYPH
GLYPH

"unilOD7"
"GR_varL"
"unilODF"
"unilOE7"
"unilOQE6"

"GR__don" GLYPH "unilOD4"

GLYPH
GLYPH
GLYPH
GLYPH

"unilOD8"
"GR__las"
"GR__j an"
"unilOQE2"

"GR__ghan" GLYPH "unilOEA" GLYPH "unilOEF" END_ENUM

317

FIRST ENUM GLYPH "unilODO" GLYPH "uni1OD1" GLYPH "GR__ban"
GLYPH "unilOED" GLYPH "unilOEE" END_ENUM

FIRST ENUM GLYPH "uniiODC" GLYPH "unilODE" END_ENUM

FIRST ENUM GLYPH "unilOE8" GLYPH "unilOE9" GLYPH "GR__chin" END_ENUM
FIRST ENUM GLYPH "unilODB" GLYPH "unilOES" GLYPH "unilOEB" END_ENUM
FIRST ENUM GLYPH "GR_varR" GLYPH "GR__rae" END_ENUM

SECOND GLYPH "unilOD6"

1 1 BY POS END_POS POS ADV -170 DX -170 END_POS 0 % @b gqb
2 1 BY POS END_POS POS ADV -120 DX -120 END_POS NECERREY
3 1 BY POS END_POS POS ADV -70 DX -70 END_POS S
4 1 BY POS END_POS POS ADV -50 DX -50 END_POS

5 1 BY POS END_POS POS ADV -40 DX -40 END_POS 9% T T
6 1 BY POS END_POS POS ADV -80 DX -80 END_POS dJ % %

END_ADJUST b9 b

END_POSITION

3.2.7.

Left boundary positioning

If the selected letters are preceded by some non-letter character (its absence in
the set "czebeg"marks the word beginning) they will be adjusted

DEF_LOOKUP "CZEbegpos" PROCESS_BASE ALL DIRECTION LTR

EXCEPT_CONTEXT LEFT GROUP "czebeg" END_CONTEXT

AS_POSITION
ADJUST_SINGLE

GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH
GLYPH

"a" BY POS ADV 80 DX 80 END_POS
"aacute" BY POS ADV 80 DX 80 END_POS
"c" BY POS ADV 80 DX 80 END_POS
"ccaron" BY POS ADV 80 DX 80 END_POS
"d" BY POS ADV 80 DX 80 END_POS
"dcaron" BY POS ADV 80 DX 80 END_POS
"g" BY POS ADV 80 DX 80 END_POS
"o" BY POS ADV 80 DX 80 END_POS
"oacute" BY POS ADV 80 DX 80 END_POS
"q" BY POS ADV 80 DX 80 END_POS

END_ADJUST
END_POSITION

'ﬁ
W

The letters [a, 4, ¢, ¢, d, d, g, 0,06, q] in
the medial positions follow the fore-
going letters immediately. However,
they have some left ‘overshots’ and
have to be adjusted if they are in
the initial position — when no let-
ter is before them. The condition
"EXCEPT_CONTEXT LEFT" is just ful-
filled for non-letter glyphs.

3.3. Creating OpenType with FontForge

This subsection illustrates producing OpenType fonts using the files in “OpenType

feature files” (FEA) [7], defined by Adobe, and generating the fonts by Font-

Forge [8]. Because all attempts to convert metric data from METAFONT/TFM or

VOLT project data failed, the procedure had to be started from scratch again.
Lookups with substitution and positioning rules into textual “feature lan-

guage” file were rewritten, again “manually” which that the procedure started

318

with some simple tables with the glyph names and an information about their
transformations derived from METAFONT sources; then the files were produced
by scripting and modified them with text editors to obtain the required format.

The syntax and lookup structure between VIP and feature file specification
differs:

lookup lookup_name {

[sub glyph by glyph;] #1
[sub glyph_list by glyph;] #2
[sub glyph by glyph_list;] #3

[sub glyph’ glyph_list by glyph; 1 #4
[sub glyph_list glyph’ by glyph; 1 #5
[sub glyph_list by glyph_list;] #6

} lookup_name ;

In FEA the context is connected with each single rule. In the “feature language”
the insertion is not supported, i.e., the character cannot appear at the same time
on the left and right side of a substitution rule (opposite to the VOLT project).
The rules like
sub glypha’ glyph_list by glypha glyph;
sub glypha’ glyph_list by glyph glypha;
are invalid and unsupported. Another restriction is that one low level lookup
must contain a sequence of only one type of substitution rules (only one from
type #1 or #2 ...#6, but those rules may be repeated many times). Violating the
constrains results in compilation fatal errors. Generally, the sequence between
"sub" and "by" may consist of more glyphs to substitute (with apostrophes) and
more context elements (without apostrophes) constituting a longer chain and
forming a compound conditional expression.

Because of different syntax and structure the commands had to be rebuilt
completely. Therefore taking the rule set from the VOLT project each insertion
rule had to be divided into two rules and also split some lookups into separate
parts. It is necessary to append (in contradiction with the VOLT project) to the
font explicitly many new additional intermediate glyphs, the number of glyphs
increases from about 350 to 670, and the number of substitution rules increases
from about 600 to 850.

319

VOLT accepts

SUB GLYPH "B"
WITH GLYPH "B" GLYPH "joinc" END_SUB

But in FEA
sub B’ Q@CZEjoinc by B joinc;

is the fatal error.

Extra glyphs glyph.ini (absent in METAFONT font and VOLT) for all letters
[Aiini - Z.ini, a.ini - z.ini] and also for all accented letters had to be
added to the font. And every insertion rule must be divided in two rules using
glyph.ini as the intermediate characters.

sub B’ @CZEjoin by B.ini;
sub B.ini by B joinc;

Moreover, the two rules above cannot be grouped in one lookup because of
their different types. Similarly, we had to add the glyphs glyph.fin to solve both
left and right boundary processing tasks. The initial and final glyph variants will
be located in PUA.

3.3.1. Single substitution
lookup GeorAlt {

sub unilOD3 by GR_varD;
sub unilODA by GR_varL;
sub unilODD by GR_var0;
sub unilOEO by GR_varR;

} GeorAlt;

3.3.2. Ligature substitution

lookup CZEliga {

sub comma comma by quotedblbase;

sub quoteleft quoteleft by quotedblleft;
sub hyphen hyphen hyphen by dash;

sub hyphen hyphen by minus;
} CZEliga;

3.3.3. Contextual substitution

Q@CZEbmnvwy = [m n ncaron v w y yacute];

lookup CZEbmnvwy {

sub b’ @CZEbmnvwy by bnarrow;

sub o’ Q@CZEbmnvwy by onarrow;

sub oacute’ @CZEbmnvwy by oacutenarrow;
sub v’ Q@CZEbmnvwy by vnarrow;

sub w’ Q@CZEbmnvwy by wnarrow;

} CZEbmnvwy;

320

The glyphs to substitute are marked by apostrophes, other glyphs between
"sub" and "by" denote the (right) context and the current glyphs will be substi-
tuted by the glyphs after "by".

The next example shows the left context.

@CZEgjqy = [g G j J 9 Q y yacute Y Yacute];
lookup CZEgjqy {

sub QCZEgjqy s’ by sdepth;

sub @CZEgjqy scaron’ by scarondepth;
} CZEgjqy;

3.3.4. Contextual insertion
In FEA it must redefined as two separate substitutions using intermediate glyphs,
their names are ended by “s”.
lookup CZEjoins_ss {
sub s’ Q@CZEjoins by s.s;
sub scaron’ QCZEjoins by scaron.s;
sub sleft’ Q@CZEjoins by sleft.s;
sub scaronleft’ QCZEjoins by scaronleft.s;
sub sdepth’ QCZEjoins by sdepth.s;
sub scarondepth’ @CZEjoins by scarondepth.s;
} CZEjoins_ss;
lookup CZEjoins_s {
sub s.s by s joins;
sub scaron.s by scaron joins;
sub sleft.s by sleft joinms;
sub scaronleft.s by scaronleft joins;
sub sdepth.s by sdepth joins;
sub scarondepth.s by scarondepth joins;
} CZEjoins_s;

3.3.5. Kerning positioning
These rules define the adjustments for the glyph pairs. In a more general case
the glyphs can be changed by glyph groups.

lookup PositGeor {

@GEOzen = [unilOD6];

@GEOzen1 = [unil1OD3 GR_varD GR__don unilOD4
unilOD5 unilOD6 unilOD7 unilOD8

unilOD9 unilODA GR_varL GR__las

unilODD GR_var0O unilODF GR__jan

unilOE1 GR__san unilOE7 unilOE2

unilOE3 unilOE4 unilOE6 GR__ghan

unilOEA uniilOEF];

@GEOzen2 = [unilODO unilOD1 GR__ban unilOED unilOEE];
@GEOzen3 = [unilODC uniilODE 1];

@GEOzen4 = [unilOE8 unilOE9 GR__chin];
@GEOzen5 = [unilODB unilOE5 unilOEB];
@GEOzen6 = [GR_varR GR__rae];

pos Q@GEOzenl @QGEOzen -170;

321

pos Q@GEOzen2 @QGEOzen -120;
pos @GEOzen3 @QGEOzen -70;
pos Q@GEOzen4 QGEOzen -50;
pos QGEOzen5 GEOzen -40;
pos Q@GEOzen6 QGEOzen -80;
} PositGeor;

3.3.6. Left boundary positioning

The glyphs listed in @CZEleftboundary and @GEOleftboundary will be adjusted
by 80 (70) units when the foregoing glyphs are not the letter that could be the
first one in the word — "ignore" reverses the condition.

lookup CZEbegpos {

ignore pos Qczebeg QCZEleftboundary’;
pos @CZEleftboundary’ < 80 0 80 0> ;
} CZEbegpos;

lookup LeftPositGeor {
Q@GEOleftboundary = [unilOD1];
@geolet = [unilODO - unilOFO

GR_varD GR_varL GR_var0O GR_varR];
ignore pos @geolet QGEOleftboundary’;
pos Q@GEOleftboundary’ < 70 O 70 0>;

} LeftPositGeor;

3.3.7. Several comparative examples

The following examples illustrate several selected cases of rules in their META-
FONT, VOLT and FEA implementations. After splitting a FEA rule in two steps
we must usually put them in separate lookups depending of the type of the rules.

% Pa Bo s bn
o ST fd//ﬁﬁ/kJ -
By b
sjﬂ/vfa//ﬁauf'v%/w

S/ e e J 5’
1 2 3 4 5

1.-3. Various letter pairs are joined by different connecting strokes.
4. The letters “s”/“S” have the modified forms after some letters (g, j, q, y).
5. The letters b, o, v, w are written narrower before m, n, v, y.

322

% o o3 do b b gy
DG NS R A e gt

1 2 3 6

1. No connection between letters — no rules defined and applied.

2. Both letters without changes with adjusted kerning.
MF 1ligtable GR_AN: GR_ZEN kern kzz#+.2u#;

VTP FIRST ...
FIRST ENUM GLYPH "unilODO" ... END_ENUM

SECOND GLYPH "uniiOD6"
2’1 BY POS END_POS POS ADV -120 DX -120 END_POS

FEA OGEOzen = [unilOD6];
@GEOzen2 = [unilODO ... 1;

pos @GEOzen2 ©GEOzen -120;

3. Letters connected but not modified.
MF 1ligtable GR_IN: GR_PAR |=:| gr_in__an;
The connecting stroke inserted after "uni10D8" before "unilODE".

VTP IN_CONTEXT RIGHT GLYPH "unilODE" END_CONTEXT
SUB GLYPH "unilOD8" WITH GLYPH "unilOD8" GLYPH "gr_in__an" END_SUB

The new glyph "unilOD8_in__an" must be added and execution in two
steps split in two different lookups (the rule types are not the same).

FEA sub unilOD8’ unilODE by unilOD8_in__an;
sub unilOD8_in__an by unilOD8 gr_in__an;

4. Only the first letter changed and connected.
MF 1ligtable GR_MAN: GR_IN =:| GR_man_;

VTP IN_CONTEXT RIGHT GLYPH "uni1OD8" END_CONTEXT
SUB GLYPH "uni1ODB" WITH GLYPH "GR_man_" GLYPH "gr_man__in" END_SUB

In FEA, changing the first glyph and inserting a junction after must be
divided in two steps.

FEA sub unilODB’ unilOD8 by GR_man_man__in;
sub GR_man_man__in by GR_man_ gr_man__in;

5. Only the second letter changed and connected.

MF 1ligtable GR_IN: GR_SAN |=:| gr_in__san;

VTP IN_CONTEXT RIGHT ENUM GLYPH "unilOE1" GLYPH "GR_san_" END_ENUM END_CONTEXT
SUB GLYPH "unilOD8" WITH GLYPH "unilOD8" GLYPH "gr_in__san" END_SUB

323

IN_CONTEXT LEFT GLYPH "gr_in__san" END_CONTEXT
SUB GLYPH "unilOE1" WITH GLYPH "GR__san" END_SUB

FEA sub unilOD8’ unilOE1 by unilOD8_in__san;
sub unilOD8_in__san by unilOD8 gr_in__san;
sub gr_in__san unilOE1’ by GR__san;

6. Both letters changed and connected.
MF 1ligtable GR_UN: GR_SAN =:| GR_un_;
ligtable GR_un_: GR_SAN |=:|> gr_en__san

VTP IN_CONTEXT RIGHT ENUM GLYPH "unilOE1" GLYPH "GR_san_"
END_ENUM END_CONTEXT
SUB GLYPH "unilOE3" WITH GLYPH "GR_un_" GLYPH "gr_en__san" END_SUB

IN_CONTEXT LEFT GLYPH "gr_en__san" END_CONTEXT
SUB GLYPH "unilOE1" WITH GLYPH "GR__san" END_SUB
SUB GLYPH "GR_san_" WITH GLYPH "GR__san_" END_SUB

FEA sub unilOE3’ unilOE1 by GR_un_en__san;
sub GR_un_en__san by GR_un_ gr_en__san;
sub gr_en__san unilOE1’ by GR__san;
sub gr_en__san GR_san_’ by GR__san_;

7. The medial letter changed and kerned.
MF 1ligtable GR_KAN: GR_IN =:| GR_kan_;
Here is a weak point in METAFONT: After processing the second and third
character there is no simple means how to return before the first letter and

correct kerning (7 right).
VTP IN_CONTEXT RIGHT GLYPH "uni1OD8" END_CONTEXT

SUB GLYPH "uni10D9" WITH GLYPH "GR_kan_" GLYPH "gr_en__in" END_SUB

FIRST ENUM ... GLYPH "unilOD5"
SECOND GLYPH "GR_kan_"

1'1 BY POS END_POS POS ADV -80 DX -80 END_PQS
FEA sub unilOD9’ unilOD8 by GR_kan_en__in;

sub GR_kan_en__in by GR_kan_ gr_en__in;

@CEOkan_ = [GR_kan_ 1;
@GEQkanA_ = [... unilOD5 ...

pos QGEOkanA_ @GEOkan_ -80;

3.3.8. Lookup order in FEA

According the specification of the feature files [5] the lookup order is determined

by the order of their definitions in the file. Their calling order, for example, in a

feature block is irrelevant. The order has to be changed by a manual swapping

or permutation of the whole text blocks using any text editor. To avoid any

misunderstanding it was decided to arrange the order of my lookup definitions:
lookup SubstGeorSingleA {

324

} SubstGeorSingleA;

lookup SubstGeorInsertA {...}
lookup SubstGeorSingleB {...} ...
lookup SubstGeorSingleC {...} ...
lookup SubstGeorInsertC {...}
lookup SubstGeorConnC {...} ...
lookup SubstGeorDoubleC {...} ...

and the order of their invocation

feature ss12 { # "Stylistic Set 12"

lookup SubstGeorSingleA; # stage 1: subst one

lookup SubstGeorInsertA; # insert - step 2

lookup SubstGeorSingleB; # stage 2: subst one

lookup SubstGeorSingleC; # stage 3: subst one

lookup SubstGeorInsertC; # insert - step 2

lookup SubstGeorConnC; # subst two - step 1

lookup SubstGeorDoubleC; # subst two - step 2
} ss12;

in exactly the same way and thus to “synchronize” both lookup sequences. Having
the lookup definitions in one order there is no chance to change this order by
trying to call them in any other order.

Resuming my experiences — several conditions must be fulfilled: lookups of
different types must be divided in the differently named lookup blocks; the lookups
of the same type may be joined together into the common lookup block; and, of
course, all the lookups must be arranged in the appropriate order. Putting all the
lookups within the font into a single one-level block would be impractical, if not
impossible, although it has not been verified.

3.4. Tests of generated fonts

The OpenType tables have been defined, the corresponding VOLT project file
created and the VOLT based font by VOLT generated. Also the feature file has
been created and the FEA based font generated.

After successful tests of the VOLT based font by VOLT Proofing tool and
testing both VOLT and FEA fonts using testing window in FontForge the fonts
with OT tables are obtained and ready to be check and tested with XfIEX and
CONTEXT and the results could be presented.

The VOLT based font gives the expected results with X{TEX (xelatex):

) (Prpltop todg

The VOLT font with context prints very similar output:

by e g

Also the FEA based font seems to be correct with xelatex:

325

by o 5

But the FEA font generated by FontForge and processed with context pro-
duces evidently wrong output with many incorrect substitutions:

ohy (19735 bordbsp

It looks like a total nonsense, and may signal a possible incompatibility
between FontForge, LuaTEX and the author’s fonts but it could not be said where
exactly the bug was.

Let‘s try the next program package producing OpenType — AFDKO.

3.5. AFDKO
AFDKO (Adobe Font Development Kit for OpenType) is a free program package
for OpenType font management. One of the programs, makeotf, is able to output
only OTF with CFF tables but this fact is not important for us because we
are interested mainly in OT features, and description of glyph outlines plays
secondary role.

First thing we have met is a small syntactic difference between feature files
read by FontForge and by makeotf (AFDKO).

FontForge fails on

QGDEF_Ligature = [quotedblleft quotedblbase
minus dash];
#QGDEF _Mark = [1;
QGDEF _Component = [quoteleft comma hyphen];
table GDEF {

GlyphClassDef @GDEF_Base,

QGDEF_Ligature, , QGDEF_Component;
} GDEF;

because it does not allow commas in GDEF; while AFDKO corrupts on

QGDEF_Ligature = [quotedblleft quotedblbase
minus dash];
QGDEF_Mark = [];
QGDEF_Component = [quoteleft comma hyphen];
table GDEF {

GlyphClassDef QGDEF_Base

QGDEF_Ligature Q@GDEF_Mark QGDEF_Component ;
} GDEF;

because it must have the commas in GDEF, and @GDEF_Mark = []; is invalid.
All other definitions (features, lookups, sub and pos rules) are absolutely iden-
tical. Some warnings are reported during generating OTF by makeotf; however,

326

the reason for the failure could not be found. Generally, the source inputs for
FontForge and AFDKO are nearly identical, in contrast to the entirely different
VOLT project regarding syntax and structure.

Reading the appropriate input feature file by AFDKO we should satisfactorily
generate the OTF file. The first extensive tests with CONTEXT look like a great
success:

) (Prpltog oodeg

All tested substitutions seems to be correct also in XfTEX. No mistake has
been found in the GSUB table:

03 (hydorop bo g

However, not all positioning rules work properly.
The GPOS table produced by AFDKO is not correct (not compatible with
XHTEX) although with FontForge we did not observe such problem.

3.5.1. Final miz

The last attempt mixes (using TTX) the font generated by AFDKO’s makeotf
connected together with the GPOS table created by FontForge, where both GSUB
and GPOS have been derived from the common source feature file.

XATEX:

by e

CONTEXT:

) (g bocheg
Only now no mistakes are seen.

3.6. A short intermediate summary
There are several different source (textual) representations of OpenType tables.
1. VOLT project (hwu.vtp) — the correct font, (hwuv.ttf) only TTF flavoured
can be produced.
2. First feature file (hwuf .fea) — FontForge produces OpenType with error-
neously ordered lookups.
3. Second feature file (hwuff.fea) — FontForge produces OpenType working
with XgTEX, errors with CONTEXT (GSUB looks correct).

327

4. Third feature file (hwufa.fea) — makeotf (from AFDKO) generates the
font (only CFF flavoured) with wrong GSUB; GPOS looks correct.

The 5th OT font (hwufo.otf), combined together with TTX from the product
of AFDKO (GSUB) and GPOS generated by FontForge, works properly with
XATEX, only small errors are observed in CONTEXT.

The “boundary processing” does not work in the line breaking points, including
the points of word hyphenation. The following examples demonstrate the problem

— in XATEX (left) and in CONTEXT (right):

oo ddouhds Lila) o doutds Adas
L/ /777/72/0‘%/&// W/— w Mﬁ%/d// wﬂ/—
Al (i

where the initial (isolated) ‘a’ is not adjusted; ‘a’ in “sta-” does not have the
“final stroke”; and the next ‘I’ is without the “initial stroke”.

3.7. Other programs
Alongside with the software tools generating OpenType fonts several other pro-
grams have been employed or tried, mostly for the purpose to find errors, verify,
compare, convert font data or acquire any relevant information about fonts and
their OpenType features. Unfortunately, many of them could not respond to
requested questions and do not give any important information.
Predominantly, work has been done on Linux systems, while MS Windows has
been used rarely: AFDKO (makeotf) and VOLT only to generate VOLT based
and FEA based fonts, and VOLT for proofing as well.

3.7.1. Visual proofing tools and displaying binary data in readable form
MS VOLT “Proofing Tool” is very sophisticated and powerful facility. It allows
to test the result of complete processing of a given glyph sequence (the glyphs
must be denoted by their names according the VOLT project and separated by
commas), to check all features separately or step by step detailed behaviour of
each lookup, and even to trace the changes glyph by glyph in the string.
FontForge can create and modify PostScript, TrueType, OpenType, SVG, and
other fonts; in addition, it comprises other suitable instruments. The “Kerning
Metrics Window” allows to check kernings and other features. The results of
application of actually selected (activated) features for entered Unicode glyph
string can be examined.

328

In CONTEXT the \showotfcomposition command provides similar tracing
during lookup processing, prints all intermediate results and informs about the
features and lookups that have been just applied, step by step until the final
result. The “only” a crucial problem is that it is not clear why the activated
lookup has not been applied or why is the behaviour of CONTEXT and X#IEX
different when processing my font.

The internal FontForge format (SFD) has a readable ASCII representation.
The "Print" command provides displaying and printing font tables and sample
multiscriptal and multilingual texts. Another program from the FontForge package,
showttf, displays a font file tables, and mensis allows you to examine and modify
some of the tables in a TrueType or OpenType font. But usually an overview of
tables and subtables can say nothing about the exact font behaviour and about
interaction or interference of features and lookups.

TrueType and OpenType fonts can be converted by the program ttx to/from
a human-readable XML-based format (TTX). This textual data may be modified
using any plain text editor. It was difficult to orientate oneself and it was possible
to make only minor changes.

3.7.2. Validation

“MS Validator” has been tried only once when the present author’s font did not
work properly. A very long output file with complete list of tables, items, features,
lookups, etc. in my font was obtained but the only information was that the font
is without errors and, of course, nothing about behaviour of the font and the
feature execution order.

3.7.3. Comparison

To compare TTX files is possible, but it is purposeful only if changes are small.
Also FontForge’s "Font compare", and its command version sfddiff afford low
benefit if there are significant differences between fonts, e.g., a comparison of a
VOLT based font and its FEA version produces vast amount of data, greater
than in both fonts, because their internal structures are dissimilar and totally
unmatched.

3.7.4. Conversions

The programs from the Font : : TTF package allow to process TrueType/OpenType
fonts: ttf2volt creates VOLT project or VOLT based font from existing Open-
Type font file, while volt2ttf compiles VOLT source into OT tables in the
font.

It was not successful: volt2ttf ends with “Can’t use an undefined value as
an ARRAY reference at /usr/local/bin/volt2ttf line 574” and for the result of
ttf2volt (the conversion was executed without errors, only some warnings were
reported) VOLT always colapses showing an uninformative message “Compilation
failed”.

329

J
b

<

Q

<

N

D

N

§)

b
(@] o o
O QOO

¢
90 A %o Tow
1 240 35y || g o
Coum T4 Yg

by Um T6 Dn 1437
%jy 7%//7/ W s P Cp ML éh

Cuws C—+ (@)

g0 b
5
0
5 yb
d4

Czech alphabet. Georgian alphabet (in the last line:
long and short letter variants of d, 1, o, r).

With FontForge we can generate a font in other font format; the features of
an opened font can be saved into a feature file that can be reread later. However,
these files are very similar to input FEA written manually, and — for VOLT based
files — are too complicated, less transparent, probably incorrect and unusable.

Therefore such facilities have been found to be rather purely theoretical.

4. Be positive

Two types of font can be produced:
1. TTF flavoured — with VOLT generated from VTP,
2. OTF (CCF/PS) flavoured — with common effort of AFDKO, FontForge and
TTX generated from FEA.

The fonts work properly (i.e. corresponding to actually defined substitution a
position rules) under X#TEX (xelatex) and under LuaTEX/context — only with
some small errors. One could be satisfied despite of many deadlocks during font
development and the fact that the font collection has not been finished completely.

The original METAFONT Czech font slabikar was created by Olsak [2].
Czech language uses Latin script with extensions, however, local traditions may

330

be different from other Latin-scripted languages. The letters in words are always
all connected together.

Both Czech and Armenian handwriting are usually slanted and use uppercase
and lowercase letters. Modern Georgian script does not distinguish capital and
small letters and handwriting is traditionally upright (at least, in the form taught
in schools). Not all adjacent letters in words are joined together.

Besides the ’liga’ feature the feature names were chosen from the user
“stylistic sets”:

’ss01” for single substitutions to replace letter variants;
’s802’ — Czech substitutions;

’s803’ — Czech positioning rules;

’s812’ — Georgian substitutions;

’s513’ — Georgian positionings, e.g. kernings.

For the Czech part to set on all features is obligatory. For Georgian it is
possible to select more combinations, only the kerning adjustment is requested in
all cases to avoid gaps and letter overlaps.

XATEX /XqgETEX can define the font features (for testing purposed our fonts
in many version are not “installed” but they are located in the current directory),
for example Georgian without substitutions and without letter connections:
\font\hwugn="[./hwufo.otf]:+liga,

+ss13" at 28pt
USUQO DQOQOOEO O?JOQUBO mogob"go{io@n QO mognbgméo
O’7080L)0 QOébj&OO’)O QQ U[BQ)J%UBOU} gom HOE)O%UBUQO
OjSm 6WBUBO (\'OO LOEQOLO QO aémaogacﬁob aoaoém UEQO

Georgian with all defined substitutions and letter connections:

\font\hwugs="[./hwufo.otf] :+liga,
+ss01,+ss12,+ss13" at 28pt

Uar]go 09&30550 %Og(ﬁ)b O')O'{PIYUU{F)QD QO Uﬁg(ﬂfgu'l{) C')\)Kfﬂ)o
Q.{‘”"l)‘_ﬂ 0000 QO UU&]P)“‘P)OO’) 800’7 %O%W ojam 6Lg“|P)Q
3500

CONTEXT uses other commands to flip/flop the features:

\definefontfeature[cz] [script=DFLT, lang=dflt,
mode=node,liga=yes,ss02=yes,ss03=yes]
\font\hwuc = hwufo*cz at 26pt

Vichmis bidir v nodis svobodnds o sobe novnis
cw doe didogmodv v g Joow maddmu
werwmems v avidemims o mapl apotn pdmal

- dwchw Sradrsdiris

331

5. Conclusion

It has been possible to generate the fonts with OpenType tables producing the
expected results, especially with XfTEX and CONTEXT. There are several different
representations of OpenType data: the OpenType specification itself, VOLT
project source format, feature language and its interpretations in AFDKO and
FontForge. Subsequently, the internal binary files produced by various programs
should be and (really) are (very often very) different and then also any effective
comparison is impossible. Unfortunately, the program tools like AFDKO, Font-
Forge, FontUntils and other have problems either with uniformity and reliability or
with compatibility with the TEX based text processors like XgIEX or CONTEXT.
However, some errors in fonts cannot be excluded even when correct results are
produced.

Acknowledgements
I would like to thank all authors of OpenType software, Adam Twardoch for consultations about
OT, Hans Hagen and Taco Hoekwater for information about CONITEXT and its font support.

References

[1] Donald E. Knuth. The METAFONTbook, Volume C of Computers and Typesetting,
Addison—Wesley, p. 317, 1986.

[2] Petr Olsak. Psané pismo ze slabikdre. Zpravodaj CSTUG 4(7), pp. 191-197, 1997; petr.
olsak.net/ftp/olsak/slabikar; bulletin.cstug.cz/pdf/bul974.pdf; Jiti Zacek, Helena
Zmatlikova. Slabikdr, Alter, 1996, 2006 (in Czech).

[3] Karel Piska. Georgian scripts. TUGboat, 19(3), 1998; http://www.tug.org/TUGboat/
Articles/tb19-3/tb60pisk.pdf.

[4] Adobe: OpenType. http://www.adobe.com/type/opentype/; Microsoft Typography: What
is OpenType? http://www.microsoft.com/typography/WhatIsOpenType.mspx.

[5] Microsoft: OpenType specification. http://www.microsoft.com/typography/otspec/.

[6] Microsoft: Visual OpenType Layout Tool (VOLT). http://www.microsoft.com/
typography/VOLT .mspx.

[7] Adobe: OpenType Feature File Specification. http://wuw.adobe.com/devnet/
opentype/afdko/topic_feature_file_syntax.html; http://partners.adobe.com/
public/developer/opentype/afdko/topic_feature_file_syntax.html.

[8] George Williams. Font creation with FontForge. FuroTEX 2003 Proceedings, TUGboat,
24(3):531-544, 2003; http://fontforge.sourceforge.net.

[9] Jonathan Kew. The XHIEX typesetting system. http://scripts.sil.org/XeTeX; http:
//www.ctan.org/tex-archive/info/xetexref/XeTeX-reference.pdf.

[10] Martin Hosken. Font-TTF, FontsUtils. http://search.cpan.org/~mhosken/; http://
scripts.sil.org/FontUtils.
[11] CoNTEXT and LuaTgX. http://wiki.contextgarden.net.

Institute of Physics, Academy of Sciences
Prague, Czech Republic
piska (at) fzu (dot) cz

332

wwuw.kostverlorenvaart.nl/context2010

334

Martin St¥iZz Publishing
Bucéovice, The Czech Republic
WWww.striz.cz — martin@striz.cz

Next to this proceedings we have published in English:
2010

Petr Rozmahel, Jarko Fidrmuc, Iika Korhonen, Lubor Lacina, Antonin
Rusek (eds.): Financial and Economic Crisis: Causes, Consequences and
the Future. ISBN 978-80-87106-38-9 (CD-ROM).

Lubor Lacina, Petr Rozmahel, Antonin Rusek: Financial Crisis: Insti-
tutions and Policies. 268 A5 pages. ISBN 978-80-87106-36-5 (softcover).
ISBN 978-80-87106-37-2 (CD-ROM).

Petr Klimek: Applied Statistics for Economics. 120 A5 pages. English-
Czech Statistical Glossary is included. Introduction to XLStatistics is also
included. ISBN 978-80-87106-32-7 (softcover).

Pavel Stf{z (book of kanjis): Roman Alphabet, Japanese Kana and Kanji
Seen Through the Kanji Stroke Order Font and Their Common Drawings
in Free TrueType Fonts. 478 A4 pages. ISBN 978-80-87106-31-0.

2009

Pavel St¥iz, Jozef Riha: TEX, INTEX and Friends: Thesis Preparation and
Beyond. 326 A4 pages. ISBN 978-80-87106-29-7 (hardcover). A version of
next book without Petr Nevriva’s bachelor thesis.

Pavel Sti1%, Jozef Riha, Petr Nevfiva: Using Typographic System TgX, Its
Friends, the I¥TEX Format and Its Packages. 438 A4 pages. ISBN 978-80-
87106-28-0 (hardcover).

Pavel Stfiz (nicknamed as book of fonts 3): The Small Book of Easily
Available Fonts for Personal, Private and Commercial Use: Book Three.
554 A3 pages. ISBN 978-80-87106-21-1 (hardcover).

Pavel Stfiz (nicknamed as book of fonts 2): The Small Book of Easily
Available Fonts for Personal, Private and Commercial Use: Book Two.
448 A4 pages. ISBN 978-80-87106-20-4 (hardcover).

Pavel Stfiz (nicknamed as book of fonts 1): The Small Book of Easily
Available Fonts for Personal, Private and Commercial Use: Book One.
436 A4 pages. ISBN 978-80-87106-19-8 (hardcover).

2007

Pavel Stfiz: Mapping and Solving Marketing-informatics Challenges of
Forthcoming Knowledge-based Society Efficiently (doctoral thesis series).
276 A5 pages. ISBN 978-80-87106-05-1 (softcover).

Pages 134 and 424 from the book of kanjis.

- Halpern’s 5
= KLD u
5
3 34
= 10 bl
£ 3
= 102 o
; 18 33
12
w
2 158 33
T 123 i
5 EEE m m
o
iy " 5
L 0 3
i " 35
) u
4 192 %
i 5 o
50 "
o %
L 31 ki 5
5 T
anmﬂm 5 E
31 36
5 e
54 36
193 36
51 3
o 56
52 %
32 36
32 36
32 38
o 3
52 7
o 3
5 i
32 37
32 «xu
Ty 5
1w s
s s
F R)
; s o
o o i g I
I RAEIREE AR ittt o B0 i 3

34 05 a8 14507 193 195 f

134 | i 437

5 ,juh-»a:@;A

‘ d ﬁéﬂ%xﬁ SRR T “@

P i Byl

_&\

@4_@;“&

@@@@ggg 344
S®000d9 1~ 4

b | F

}
A
H

Pages 168 and 544 from the book of fonts 3.

335

336

Impressions

Many thanks for the nice Tshirt, it is the first time that TgX Tshirt fitted me
so nice and I love the design. In Afrikaans: Baie dankie,
Eva van Deventer, South Africa

Thank you so much for an amazing experience in Brejlov. I have fallen in
love with the Czech countryside and, of course, with Prague where I only
spent two days. Jaroslav [Hajtmar], it was wonderful to meet you and I will
always remember our walk through the countryside together. I have a picture
of the Trabant that makes me smile. I am enclosing a few photographs for
you all. htip://striz9.fame.utb.cz/texperience/2010/fotky/pavneet-arora
Pavneet Arora, Canada

A wonderful week!!! Your hospitality was... overwhelming! Thanks.
Steffen Wolfrum, Germany

\starthankyou
It was a pleasure to be here
. 80 nice people
. so wonderful location/environment
. so tasty food
. so careful organization
I hope to meet you here again in three years.
\stopthankyou

Mojca Miklavec, Slovenia

I enjoyed the CoNIEXT meeting and it was lot of fun. I'm really looking
forward to the next meeting when we're all be together and TiX all day and
night. Wolfeang Schuster, Germany

\dorecurse{1000}{THANKS} Hraban Ramm Henning, Switzerland

Thanks for wonderful meeting, for occasion to meet nice people, and for
perfect organisation. Piotr Strzelczyk, Poland

Thank you so much for this conference! I got to discover the Czech Republic
as well as the members of the CONIFXT community!
Alan Braslau, France

Thanks again for organizing and hosting this excellent conference! I've felt at
home and inspired all week in the great company of you & friends. Looking
forward to meeting gain! All the best from Amsterdam,

Frans Goddijn, The Netherlands

Mill Brejlov and Frans Goddijn (self-portrait), an excellent photographer!

Zpravodaj Ceskoslovenského sdruzeni uzivateli TEXu
ISSN 1211-6661 (tisténd verze), ISSN 1213-8185 (online verze)

Vydalo: Ceskoslovenské sdruzeni uzivatelit TEXu
vlastnim nakladem jako interni publikaci

Obalka: Antonin Strejc

Tlustrace na obélce: Juraj Horvath

Pocet vytisku: 1050

Uzavérka: 20.2.2011

Odpovédny redaktor: Zdenék Wagner

Redakéni rada Jan Busa, Jifi Demel, Tomas Héla,

Jaromir Kuben, Michal Rbzicka, Jiti Rybicka,
Petr Sojka, Pavel Stifz, Jan Sustek
Technicky redaktor: Tomas Hala

Tisk a distribuce: KONVOJ, spol. s r.o0., Berkova 22, 612 00 Brno,

tel. +420 541 245 548
Adresa: &TUG, c¢/o FEL CVUT, Technicka 2, 166 27 Praha 6
Email: cstug@cstug.cz

Ziizené postovni aliasy sdruzeni (§TUG:
bulletin@cstug.cz, zpravodaj@cstug.cz

korespondence ohledné Zpravodaje sdruzeni
board@cstug.cz

korespondence ¢lenum vyboru
cstug@cstug.cz, president@cstug.cz

korespondence predsedovi sdruzeni
gacstug@cstug.cz

grantova agentura GI'UGu
secretary@cstug.cz, orders@cstug.cz

korespondence administrativni sile sdruzeni, objedndvky CD a DVD
cstug-members@cstug.cz

korespondence ¢lenim sdruzeni
cstug-faq@cstug.cz

feSené otazky s odpovédmi navrhované k zarazeni do dokumentu (GFAQ
bookorders@cstug.cz

objednavky tisténé TEXové literatury na dobirku
ftp server sdruzeni:

ftp://ftp.cstug.cz
www server sdruzeni:

http://www.cstug.cz

CONTENTS

Jan Kula, Pavel St¥iz:

Preface ..o 69
Selected Abstracts from TEXperiencecccoveviiiiiniinininn.. 74
Abstracts without Papersc.oooooiiiiiiiiiiii 78
Arthur Reutenauer:

Mobile TEX: Porting TEX to the iPadco. 84
Luigi Scarso:

Playing with Flash in CONTEXT-mKiv ..., 91
Luigi Scarso:

MicroTalk — pAfSplit «...eoeinie i 102
Ulrik Vieth: Experiences Typesetting OpenType Math

with LualfTEX and XgETEX ..o, 116
Taco Hoekwater, Hartmut Henkel:

LuaTREX 0.60 .. oo 127
Taco Hoekwater:

LuaTgX 0.63 Short Referencecocoooiiiiiiiiiiiiiiii, 134
John Haltiwanger: Subtext: A Proposed Processual

Grammar for a Multi-Output Pre-Format 140
Willi Egger:

Arranging Pagesooiiiiiii 147
Libor Sarga: Guide TEX It: Uneasy Beginnings of

Typesetters from the Perspective of Non-Typesetters 157
Jan Prichystal: Typesetting of Tables and Lists and

Other New Features in TEXonWebcccoooviiiiiiiiiii. 166
Timothy Eyre:

ConTREXt fOr "ZINes ...ovoviniriiiii 170
Hans Hagen:

MKIV Hybrid Technologycccoueiiiiiiiiiiiiiiiiiiiiieie 182

Tomas Hala:
Marking Proof-sheets in Publishing Practice and Its
Implementation in the TEX Systemcccooooiiiiiiiii. 301

Karel Piska:
Fonts with Complex OpenType Tablescccocvviiiiiiiiiiiinnn... 309

