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Abstract 

Ever-expanding general discipline of signal and image processing occupies a very important 
position in information engineering forming a basis for further disciplines including control 
engineering, vision, robotics, biomedical image analysis and environmental signal processing. 
The paper presents the integration role of this interdisciplinary area connecting physics and 
mathematics and it provides the survey of selected methods of time-frequency and time-scale 
analysis using the short-time Fourier Transform (STFT) and wavelet Transform (WT) at first. 
Comparison of both methods imply the different and varying resolution in case of the wavelet 
transform and it presents some their properties. Signal decomposition enables very important 
applications in signal de-noising, compression, segmentation and classification. These general 
methods can be applied in many areas including biomedical image analysis and 
environmental signal processing. A special attention is paid to the use of signal processing in 
signal prediction.   

1. INTRODUCTION 

Signal and image processing became an integral part of many engineering disciplines in the 
last century allowing to find similar mathematical description of diverse applications 
including biomedical image analysis, environmental signal processing, control system 
modelling, speech analysis and data forecasting. In this way it forms an interdisciplinary basis 
for physics and mathematics using information engineering and modern information 
technologies.  
Methods and applications of signal and image processing as an ever-expanding discipline are 
discussed in many papers and books [33,14,2,31,7,5,25,17,21]. In some way it reminds the 
relation between mathematics and physics expressed by famous French mathematician Henri 
Poincaré: The science of physics does not only give us (mathematicians) an opportunity to 
solve problems, but helps us also to discover the means of solving them. In similar way Simon 
Haykin, professor of McMaster University in Canada says [9]: Signal processing is at its best 
when it successfully combines the unique ability of mathematics to generalize with both the 
insight and prior information gained from the underlying physics of the problem at hand.  
Information engineering assume digital real data acquisition with a selected sampling period 
and their following analysis and processing including system identification and linear or non-
linear modelling. In this way information engineering and signal and image processing 
provide a general tool for control engineering, measuring engineering, image processing, 
vision, robotics and other related discipline using database engineering in many cases. It 
allows both system and signal modelling allowing signal segmentation, feature extraction, 



classification, prediction or compression.  
Mathematical methods of signal and image analysis are based in many cases on the one-
dimensional or two-dimensional discrete Fourier transform or on the wavelet transform 
[18,11,35] allowing either time-frequency or time-scale signal analysis. The following signal 
and image processing use both linear methods including FIR filters described in z-domain and 
non-linear methods based upon artificial neural networks [8,1] using various optimization 
methods in many cases. Further application allows signal components rejection providing a 
basis for adaptive signal processing and signal and image enhancement and de-noising 
[22,26].  
Algorithmic tools using information technologies allow verification and application of general 
methods of signal processing. The paper is devoted to the survey of selected methods of time-
frequency and time-scale signal analysis used for signal components detection and 
classification, to selected topics of linear and non-linear signal modelling allowing its 
prediction and to basic comments to image processing. Applications include biomedical 
signals [15], analysis of energy consumption [29,30], environmental signals [12] and image 
processing [20,19,13]. The mathematical description and analysis of such systems is given in 
the MATLAB/SIMULINK environment [10] resulting in algorithms verified for simulated 
signals at first and applied to real signal processing.  

2. SIGNAL ANALYSIS 

Information engineering uses methods of digital signal processing for time-frequency and 
time-scale signal analysis forming fundamental tool in signal decomposition, feature 
extraction, classification and processing including signal de-noising.  

1. Discrete Fourier Transform 

In case of an analysis of a signal { ( 1
0)}N

nx n −
=  it is possible to apply the Discrete Fourier 

Transform and namely its fast algorithm (FFT) that enables to find its transform in the form   
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for 2( ) Nk k πω =  where 0 1 1k N= , , , − . This transform can be applied either to a selected signal 
segment or it can be applied in a moving window as a short-time Fourier transform (STFT) 
allowing non-stationary signal analysis. Frequency and time resolution is constant and longer 
window results in worse time resolution and vice versa.  
Fig. 1 presents the use of STFT for the analysis of energy (gas) consumption measured with 
the sampling period of two hours. The time representation of this signal enables to assume the 
periodic component one day long that is verified by the FFT that detects periodicity of one 
day presenting higher spectral components as well. This result can be further used in this time 
series modelling, model order selection and its prediction.  
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Figure 1. The short time Fourier transform of a selected segment representing gas consumption in the 

Czech Republic measured with the sampling period of two hours 

2. Two-Dimensional Fourier Transform 

Methods of image processing are closely related to two-dimensional discrete Fourier 
transform of signal { (  defined by relation   1
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for ,  standing for frequency components   0 1 1k M= , , , − 0 1 1l= , , , −N
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Results of simulated image analysis are presented on Fig. 2.  
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Figure 2. Simulated image analysis based upon the application of two dimensional Fourier transform and 

its added noise rejection by two dimensional FIR filter 

3. Discrete Wavelet Transforms 

Wavelet transforms (WT) provide the alternative to the short-time Fourier transform for non-
stationary signal analysis [27,34,3,18]. Both STFT and WT result in signal decomposition 
into two-dimensional function of time and frequency respectively scale. The basic difference 
between these two transforms is in the construction of the window function which has a 
constant length in case of the STFT (including rectangular, Blackman and other window 
functions) while in case of the WT wide windows are applied for low frequencies and short 
windows for high frequencies to ensure constant time-frequency resolution. Local and global 
signal analysis can be combined in this way.  
Wavelet functions used for signal analysis are derived from the initial basic (mother) function 

 forming the set of functions  ( )h t
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for discrete parameters of dilation 2ma =  and translation b k . Wavelet dilation 
correspond to spectrum compression according to Fig. 3. The most common choice includes 
Daubechies wavelets even though their frequency characteristics stands for approximation of 
band-pass filters only. On the other hand harmonic wavelets introduced in [18] can have 
broader application in many engineering problems owing to their very attractive spectral 
properties.  

2m=
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Figure 3. Spectral analysis of selected wavelet functions presenting relation between time dilation and the 

corresponding spectrum compression 
The basic efficient way to evaluate wavelet transform coefficients using the signal processing 
notation assumes implementation of the Mallat’s pyramidal structure of wavelet transform 
coefficients evaluation for a given column vector { ( 1

0)}N
nx n −
=  according to the scheme given in 

Fig. 4.   
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Figure 4. A pyramidal filter bank structure used to evaluate wavelet transform coefficients for a given 
signal { ( 1

0)}N
nx n −
=  and complementary low-pass and high-pass filters l n  and  ( ) ( )h n

Using the signal processing point of view this algorithm assumes the use of the half band low-
pass scaling sequence { (  together with the corresponding wavelet sequence { (1

0)}L
nl n −
=

1
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and their convolution with the analyzed signal { ( 1
0)}N

nx n −
=  subsampled by two using relation  
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Matrix notation given in Fig. 4 assumes convolution matrices  
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allowing signal decomposition into the following form  
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Comparison of real EEG signal analysis both by the STFT and WT is given in Fig. 5. Peak 
detection is much more accurate by the WT comparing with the STFT owing to its changing 
window size.  
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Figure 5. Spectrogram and scalogram of a given data segment representing EEG signal 

3. SIGNAL AND IMAGE PROCESSING 

Information about signals resulting from a selected process can be based upon signal 
decomposition by a given set of wavelet functions into separate levels or scales resulting in 
the set of wavelet transform coefficients. These values can be used for signal compression, 
signal analysis, segmentation and in case that these coefficients are not modified they allow 
the following perfect signal reconstruction. In case that only selected levels of signal 
decomposition are used or wavelet transform coefficients are processed it is possible to 
extract signal components or to reject its undesirable parts.  

1. Signal and Image De-Noising 

Using the threshold method introduced by [28,6] it is further possible to reject noise and to 
enlarge signal to noise ratio. The de-noising algorithm assumes that the signal has low 
frequency components and that it is corrupted by the additive Gaussian white noise with its 
power much lower than that of the analyzed signal. The whole method consists of the 
following steps:   

• Signal decomposition using a chosen wavelet function up to the selected level 
and evaluation of wavelet transform coefficients   
• The choice of threshold limits for each decomposition level and modification 
of its coefficients   
• Signal reconstruction from modified wavelet transform coefficients   



Results of this process depend upon the proper choice of wavelet functions, selection of 
threshold limits and their use.  
The application of threshold limits to modify wavelet coefficients { (  include two basic 
approaches. The use of the soft thresholding formula for a chosen thresholding value 
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results in the evaluation of new coefficients   
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The hard thresholding method results in the following values of coefficients   
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Similar approach can be applied both for one-dimensional and two-dimensional signals. 
Further methods of image de-noising include the two dimensional convolution of the kernel 

K J,H  and the image data M N,A ,   
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Results of application of this method for biomedical image processing and enhancement is 
given in Fig. ??0.  
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Figure 6. Magnetic resonance image de-noising and enhancement 

2. Image Interpolation and Correlation 

Interpolation belongs to fundamental methods in many applications. A special role has two-
dimensional or three-dimensional interpolation using either linear, cubic or spline methods. A 
specific application is in interpolation of air-pollution measured at specified observation 
stations defined by their latitude and longitude to the selected region.  
For information about air pollutants it is possible to use correlation methods applied to images 
obtained from satellites at different wavelengths. Correlation coefficient for corresponding 
subimage regions of matrices  and B  can be evaluated by relation   A
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Selected results of air pollution obtained from correlation between two satellite channels are 
presented in Fig. 7.  
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Figure 7. Air pollution by dust particles obtained from correlation between two channels of satellite 

observations 

3. Signal Modelling and Prediction 

Signal modelling is a very important tool of information engineering with its application in 
technology, control systems, bioengineering, environmental systems and econometrics. 
Methods of signal modelling and prediction include linear and nonlinear systems. The 
theoretical background of autoregressive models [16,32] assumes relation   
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allowing estimation of reliability limits   
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for a chosen critical value 2ε/ , variance v  and length . Fig. 8 presents results of gas 
consumption prediction.  

e m
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Figure 8. Gas consumption prediction and its reliability limits 

Non-linear systems used for signal prediction use in many cases artificial neural networks 
[8,4] and Widrow methods of adaptive signal processing. While linear autoregressive models 
are sufficient in many applications including both serially and seasonally related time series it 
is necessary to use non-linear systems in special cases. The basic neural network structure 
[8,24,23] presented in Fig. 9   
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Figure 9. Basic structure of artificial neural networks 

assumes its two layers of sizes 1 1R S− −  with a transfer function  including both 
sigmoidal and wavelet functions. Output of such a model for any input vector  is defined 
by relation   

1F
1R,P

  (9) 2 1 ( 1 1) 2 1F= ∗ ∗ + + −Y W W P B B mm
1 1where matrices 11 2S R S, ,,W W  define neural network coefficients and vectors 1 1 1 11 2S , ,,B B  

represent biases.  
Gas consumption prediction assuming the specification of learning and validation parts is 
given in Fig. 10.  
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Figure 10. Artificial neural network application to gas consumption prediction 

Coefficients estimation assumes application of various optimization methods including 
genetic algorithms and gradient methods presented in Fig. 11.  

=55mm =88mm -1mm f2b.eps   
Figure 11. Comparison of gradient method and genetic search 

4. CONCLUSION 

The paper presents selected aspects of relation between information engineering and methods 
of signal and image processing. In this context several general algorithms of signal analysis 
and processing are presented as well together with application to biomedical and 
environmental signal processing. The basic goal of the paper is to show that the mathematical 
background is similar in various research areas and to point to general tools of information 
engineering and discrete data processing. Further information are available from the DSP 
research group address http://phobos.vscht.cz.  
It seems that classical methods of signal processing developed in the 20th century will form 
basis for evolution of modern statistical digital signal processing methods in the 21st century. 
According to opinion of Prof. Simon Haykin [9] it will bring together mathematics and 
physics reconciling the ever-present tension between them allowing to (i) test the performance 
of algorithms with real-life data and (ii) learn from the data.  
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Table 1. Testovací tabulka českých znaků 
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