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FUNDAMENTAL PROBLEMS OF 

SIGNAL AND IMAGE PROCESSING 
Aleš PROCHÁZKA and Aleš PAVELKA 

Abstract 

Ever-expanding general discipline of signal and image processing occupies a very 
important position in information engineering forming a basis for further disciplines 
including control engineering, vision, robotics, biomedical image analysis and 
environmental signal processing. The paper presents the integration role of this 
interdisciplinary area connecting physics and mathematics and it provides the survey of 
selected methods of time-frequency and time-scale analysis using the Short-Time Fourier 
Transform (STFT) and Wavelet Transform (WT) at first. Comparison of both methods 
imply the different and varying resolution in case of the wavelet transform and it presents 
some their properties. Signal decomposition enables very important applications in signal 
de-noising, compression, segmentation and classification. These general methods can be 
applied in many areas including biomedical image analysis and environmental signal 
processing. A special attention is paid to the use of signal processing in signal prediction. 



1. INTRODUCTION 

Signal and image processing became an 
integral part of many engineering 
disciplines in the last century allowing to 
find similar mathematical description of 
diverse applications including biomedical 
image analysis, environmental signal 
processing, control system modelling, 
speech analysis and data forecasting. In 
this way it forms an interdisciplinary basis 
for physics and mathematics using 
information engineering and modern 
information technologies.  
 
Methods and applications of signal and 
image processing as an ever-expanding 
discipline are discussed in many papers 
and books [33,14,2,31,7,5,25,17,21]. In 
some way it reminds the relation between 
mathematics and physics expressed by 
famous French mathematician Henri 
Poincaré: The science of physics does not 
only give us (mathematicians) an 
opportunity to solve problems, but helps us 
also to discover the means of solving them. 
In similar way Simon Haykin, professor of 
McMaster University in Canada says [9]: 
Signal processing is at its best when it 
successfully combines the unique ability of 
mathematics to generalize with both the 
insight and prior information gained from 
the underlying physics of the problem at 
hand.  
 
Information engineering assume digital 
real data acquisition with a selected 
sampling period and their following 
analysis and processing including system 
identification and linear or non-linear 
modelling. In this way information 
engineering and signal and image 
processing provide a general tool for 
control engineering, measuring 
engineering, image processing, vision, 
robotics and other related discipline using 
database engineering in many cases. It 
allows both system and signal modelling 
allowing signal segmentation, feature 

extraction, classification, prediction or 
compression.  
Mathematical methods of signal and image 
analysis are based in many cases on the 
one-dimensional or two-dimensional 
discrete Fourier transform or on the 
wavelet transform [18,11,35] allowing 
either time-frequency or time-scale signal 
analysis. The following signal and image 
processing use both linear methods 
including FIR filters described in z-domain 
and non-linear methods based upon 
artificial neural networks [8,1] using 
various optimization methods in many 
cases. Further application allows signal 
components rejection providing a basis for 
adaptive signal processing and signal and 
image enhancement and de-noising 
[22,26].  
 
Algorithmic tools using information 
technologies allow verification and 
application of general methods of signal 
processing. The paper is devoted to the 
survey of selected methods of time-
frequency and time-scale signal analysis 
used for signal components detection and 
classification, to selected topics of linear 
and non-linear signal modelling allowing 
its prediction and to basic comments to 
image processing. Applications include 
biomedical signals [15], analysis of energy 
consumption [29,30], environmental 
signals [12] and image processing 
[20,19,13]. The mathematical description 
and analysis of such systems is given in the 
MATLAB/SIMULINK environment [10] 
resulting in algorithms verified for 
simulated signals at first and applied to real 
signal processing.  

2. SIGNAL ANALYSIS 

Information engineering uses methods of 
digital signal processing for time-
frequency and time-scale signal analysis 
forming fundamental tool in signal 
decomposition, feature extraction, 
classification and processing including 
signal de-noising.  



1. Discrete Fourier Transform 

In case of an analysis of a signal 1
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it is possible to apply the discrete Fourier 
transform and namely its fast algorithm 
(FFT) that enables to find its transform in 
the form   
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for 2( ) Nk k πω =  where 0 1 1k N= , , , − . This 
transform can be applied either to a 
selected signal segment or it can be applied 
in a moving window as a short-time 
Fourier transform (STFT) allowing non-
stationary signal analysis. Frequency and 
time resolution is constant and longer 
window results in worse time resolution 
and vice versa.  
Fig. 1 presents the use of STFT for the 
analysis of energy (gas) consumption 
measured with the sampling period of two 
hours. The time representation of this 
signal enables to assume the periodic 
component one day long that is verified by 
the FFT that detects periodicity of one day 
presenting higher spectral components as 
well. This result can be further used in this 
time series modelling, model order 
selection and its prediction.  

 
Figure 1. The short time Fourier transform of a 
selected segment representing gas consumption 

in the Czech Republic measured with the 
sampling period of two hours 

2. Two-Dimensional Fourier 
Transform 

Methods of image processing are closely 
related to two-dimensional discrete Fourier 
transform of signal 1 1

0 0{ ( )}N M
n mg m n − −
= =,  defined 

by relation   
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for 0 1 1k M= , , , − , 0 1 1l N= , , , −  standing 
for frequency components   
 1 2( ) 2 ( ) 2F k k M F l l Nπ π= / , = /  

Results of simulated image analysis are 
presented on Fig. 2.  

 
Figure 2. Simulated image analysis based upon 

the application of two dimensional Fourier 
transform and its added noise rejection by two 

dimensional FIR filter 

3. Discrete Wavelet Transforms 

Wavelet transforms (WT) provide the 
alternative to the short-time Fourier 
transform for non-stationary signal analysis 
[27,34,3,18]. Both STFT and WT result in 
signal decomposition into two-dimensional 
function of time and frequency respectively 
scale. The basic difference between these 
two transforms is in the construction of the 
window function which has a constant 
length in case of the STFT (including 
rectangular, Blackman and other window 
functions) while in case of the WT wide 
windows are applied for low frequencies 
and short windows for high frequencies to 
ensure constant time-frequency resolution. 
Local and global signal analysis can be 
combined in this way.  



Wavelet functions used for signal analysis 
are derived from the initial basic (mother) 
function ( )h t  forming the set of functions  
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for discrete parameters of dilation 2ma =  
and translation 2mb k= . Wavelet dilation 
correspond to spectrum compression 
according to Fig. 3. The most common 
choice includes Daubechies wavelets even 
though their frequency characteristics 
stands for approximation of band-pass 
filters only. On the other hand harmonic 
wavelets introduced in [18] can have 
broader application in many engineering 
problems owing to their very attractive 
spectral properties.  

 
Figure 3. Spectral analysis of selected wavelet 

functions presenting relation between time 
dilation and the corresponding spectrum 

compression 
The basic efficient way to evaluate wavelet 
transform coefficients using the signal 
processing notation assumes implement-
tation of the Mallat’s pyramidal structure 
of wavelet transform coefficients evalua-
tion for a given column vector 1
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according to the scheme given in Fig. 4. 
Using the signal processing point of view 
this algorithm assumes the use of the half 
band low-pass scaling sequence 1
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together with the corresponding wavelet 

sequence 1
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nh n −
=  and their convolution 

with the analyzed signal 1
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subsampled by two using relation  
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Figure 4. A pyramidal filter bank structure used 
to evaluate wavelet transform coefficients for a 

given signal 1
0{ ( )}N

nx n −
=  and complementary low-

pass and high-pass filters ( )l n  and ( )h n  

Matrix notation given in Fig. 4 assumes 
convolution matrices  
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allowing signal decomposition into the 
following form  
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Comparison of real EEG signal analysis 
both by the STFT and WT is given in 
Fig. 5. Peak detection is much more 
accurate by the WT comparing with the 
STFT owing to its changing window size.  



 
Figure 5. Spectrogram and scalogram of a given 

data segment representing EEG signal 

3. SIGNAL AND IMAGE 
PROCESSING 

Information about signals resulting from a 
selected process can be based upon signal 
decomposition by a given set of wavelet 
functions into separate levels or scales 
resulting in the set of wavelet transform 
coefficients. These values can be used for 
signal compression, signal analysis, 
segmentation and in case that these 
coefficients are not modified they allow the 
following perfect signal reconstruction. In 
case that only selected levels of signal 
decomposition are used or wavelet 
transform coefficients are processed it is 
possible to extract signal components or to 
reject its undesirable parts.  

1. Signal and Image De-Noising 

Using the threshold method introduced by 
[28,6] it is further possible to reject noise 
and to enlarge signal to noise ratio. The de-
noising algorithm assumes that the signal 
has low frequency components and that it 
is corrupted by the additive Gaussian white 
noise with its power much lower than that 
of the analyzed signal. The whole method 
consists of the following steps:   

• Signal decomposition using a 
chosen wavelet function up to the 
selected level and evaluation of wavelet 
transform coefficients   
• The choice of threshold limits for 
each decomposition level and 
modification of its coefficients   

• Signal reconstruction from 
modified wavelet transform coefficients   

Results of this process depend upon the 
proper choice of wavelet functions, 
selection of threshold limits and their use.  
The application of threshold limits to 
modify wavelet coefficients 1

0{ ( )}N
kc k −
=  

include two basic approaches. The use of 
the soft thresholding formula for a chosen 
thresholding value δ  results in the 
evaluation of new coefficients   
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The hard thresholding method results in the 
following values of coefficients   
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Similar approach can be applied both for 
one-dimensional and two-dimensional 
signals. Further methods of image de-
noising include the two dimensional 
convolution of the kernel K J,H  and the 
image data M N,A ,   
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Results of application of this method for 
biomedical image processing and 
enhancement is given in Fig. 6.  

 
Figure 6. Magnetic resonance image de-noising 

and enhancement 



2. Image Interpolation and 
Correlation 

Interpolation belongs to fundamental 
methods in many applications. A special 
role has two-dimensional or three-
dimensional interpolation using either 
linear, cubic or spline methods. A specific 
application is in interpolation of air-
pollution measured at specified observation 
stations defined by their latitude and 
longitude to the selected region.  
For information about air pollutants it is 
possible to use correlation methods applied 
to images obtained from satellites at 
different wavelengths. Correlation 
coefficient for corresponding subimage 
regions of matrices A  and B  can be 
evaluated by relation   

 
2 2

( )( )

( ( ) )( ( ) )

m n m n
m n

m n m n
m n m n

A A B B
R

A A B B

, ,

, ,

− −
=

− −

∑∑

∑∑ ∑∑
 

Selected results of air pollution obtained 
from correlation between two satellite 
channels are presented in Fig. 7.  

 
Figure 7. Air pollution by dust particles obtained 

from correlation between two channels of 
satellite observations 

3. Signal Modelling and Prediction 

Signal modelling is a very important tool 
of information engineering with its 
application in technology, control systems, 
bioengineering, environmental systems and 
econometrics. Methods of signal modelling 
and prediction include linear and nonlinear 

systems. The theoretical background of 
autoregressive models [16,32] assumes 
relation   
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allowing estimation of reliability limits   
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for a chosen critical value 2ε/ , variance ev  
and length m . Fig. 8 presents results of gas 
consumption prediction.  

 
Figure 8. Gas consumption prediction and its 

reliability limits 
Non-linear systems used for signal 
prediction use in many cases artificial 
neural networks [8,4] and Widrow methods 
of adaptive signal processing. While linear 
autoregressive models are sufficient in 
many applications including both serially 
and seasonally related time series it is 
necessary to use non-linear systems in 
special cases. The basic neural network 
structure [8,24,23] presented in Fig. 9   

 
Figure 9. Basic structure of artificial neural 

networks 



assumes its two layers of sizes 1 1R S− −  
with a transfer function 1F  including both 
sigmoidal and wavelet functions. Output of 
such a model for any input vector 1R,P  is 
defined by relation   
 2 1 ( 1 1) 2F= ∗ ∗ + +Y W W P B B  (7) 
where matrices 1 1 11 2S R S, ,,W W  define 
neural network coefficients and vectors 

1 1 1 11 2S , ,,B B  represent biases.  
Gas consumption prediction assuming the 
specification of learning and validation 
parts is given in Fig. 10.  

 
Figure 10. Artificial neural network application 

to gas consumption prediction 
Coefficients estimation assumes 
application of various optimization 
methods including genetic algorithms and 
gradient methods presented in Fig. 11.  

 
Figure 11. Comparison of gradient method and 

genetic search 

4. CONCLUSION 

The paper presents selected aspects of 
relation between information engineering 
and methods of signal and image 

processing. In this context several general 
algorithms of signal analysis and 
processing are presented as well together 
with application to biomedical and 
environmental signal processing. The basic 
goal of the paper is to show that the 
mathematical background is similar in 
various research areas and to point to 
general tools of information engineering 
and discrete data processing. Further 
information are available from the DSP 
research group address http://dsp.vscht.cz.  
It seems that classical methods of signal 
processing developed in the 20th century 
will form basis for evolution of modern 
statistical digital signal processing methods 
in the 21st century. According to opinion 
of Prof. Simon Haykin [9] it will bring 
together mathematics and physics 
reconciling the ever-present tension 
between them allowing to (i) test the 
performance of algorithms with real-life 
data and (ii) learn from the data.  
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